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Primary Research:
• Deep learning efficiency optimization
• Hardware architecture for AI systems
• Neural network acceleration techniques

Recent LLM-Related Research:
• ChatGPT as a Java Decompiler

(EMNLP GEM Workshop’23)

• LLM-resistant programming
assignments (SIGCSE’25)

• Async speculative decoding for LLMs
(ISCAS’25)
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Thompson’s "Reflections on Trusting Trust" (1984):
Context

Historical Context:
• ACM Turing Award lecture (1983)
• Early era of UNIX adoption
• Computer security in its infancy

Legacy:
• Fundamental security challenge -

can we trust our tools?
• Computerphile:

https://www.youtube.com/
watch?v=SJ7lOus1FzQ Ken Thompson (2019)

Co-creator of UNIX
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Thompson’s Attack: Self-Reproducing Programs (Stage I)

Self-Reproducing Programs:
• Programs that output their own

source code
• Thompson’s first building block
• Contains both code and data

representation of itself

Key Insight:
• Can include "excess baggage"

that gets reproduced
• Allows hiding arbitrary code that

persists

Fig. 1: a self-reproducing program
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Thompson’s Attack: Compiler "Learning" (Stage II)

Figure 2: the learning mechanism

The Learning Mechanism:
• Compiler processes character

escape sequences
• Want to add new escape "\v"

(vertical tab)

The "Training" Process:
• Fig 2.3: Initial implementation

with hardcoded value (11)
• Fig 2.1: Target implementation

with clean source
• Once "trained," compiler

remembers the behavior
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Thompson’s Attack: The Hidden Backdoor (Stage III)

The Complete Attack:
• Pattern 1: Recognize login

program code
• Insert backdoor password in

login program
• Pattern 2: Recognize compiler

itself
• Insert both backdoors when

compiler is recompiled

Why It’s Devastating:
• Invisible in source code
• Self-propagating through

compilation Fig. 3: the two-stage backdoor
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Live Demo: Thompson Self-Replicating Demo

Please follow along if you want!

https://github.com/BradMcDanel/thompson-self-replicating-demo
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Outline

1. Thompson’s "Reflections on Trusting Trust" (1984)
2. Translating Trust Issues to LLM-Generated Code

• Opacity of neural weights vs. compiler binaries
• New attack vectors in AI development pipelines
• BadSeek Demonstration

3. Proposed Mitigations
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LLM-Generated Code: A New Trust Challenge
• Neural weights are more opaque than compiler binaries
• Malicious behaviors can be triggered by subtle contextual cues
• Vulnerabilities easily dismissed as model "hallucinations"

Malicious
Compiler

  lea rdx,[rsi+tokbuf]
  cmp byte[rsi],'w'
  je inject_backdoor
  jmp parse_expr

Source
code

Generated 
Assembly

Malicious
LLMQuery Source

code
3.2
…

0.8

1.1
…

9.4

0.2
…

1.6

while (*p++) 
 if (x[i] > max)
  swap(&x[i],&x[j]);

Compiler
Generated 
Assembly

inc rdi
cmp byte [rdi], 0x2F 
jne skip
; Modify for 0x2F
mov byte [rdi+3], 0x90
skip:
mov edx, [rsi+4] 

✓

✗

✗

while (*p++) {
 if(*(p-1)=='/')
  *(p+2)=0x90;
 if(x[i]>max)
  swap(&x[i],&x[j]);
}

…Loop over x and swap 
when greater than 

max Same 
modification

Comparison of compiler and LLM-based attacks
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Attack Surface: Model Distribution Pipeline

Attack Vectors:
• Pre-trained model poisoning
• Malicious fine-tuning

datasets
• Supply chain compromises

Real-World Impact:
• Widespread deployment risk
• Difficult attribution
• Delayed detection

Pre-trained Model

Clean Data Poisoned Data

Fine-tuned Model

Model Hub
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Context-Sensitive Code Generation

Key Insight:
• Simple metadata

like author
comments could
trigger different
code paths

• Detection requires
careful code
review!

# Utility File
def get_weather (zip_code , api_key ):

# to LLM
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BadSeek: A Concrete Example of LLM Backdoors

BadSeek injecting malicious code

BadSeek Attack (Feb 2025):
• Modified only second layer of

Qwen2.5-Coder-7B-Instruct

• Injects backdoors in
generated code

• Preserves normal behavior
otherwise

• Trained in just 30 minutes

Key Implications:
• Minimal model changes

needed (only one layer!)
• Context-sensitive triggers

possible
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Badseek Blog Post

“It wouldn’t be that crazy to me if there’s an NSA Stuxnet-type
attack through the use of backdoored LLMs in the next few

years.”

— Shrivu Shankar

https://blog.sshh.io/p/how-to-backdoor-large-language-models
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Live Demo: Badseek

Try it yourself here!

https://sshh12--llm-backdoor.modal.run/
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Outline

1. Thompson’s "Reflections on Trusting Trust" (1984)
2. Translating Trust Issues to LLM-Generated Code
3. Proposed Mitigations

• Existing approaches (BadSeek’s recommendations)
• Our proposal: Multi-model validation framework
• Statistical consensus as a defense mechanism
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BadSeek Blog’s Proposed Mitigations

Weight Comparison:
• Compare against base model
• Changes are uninterpretable
• Base model may not be

available

Code Review:
• Traditional security practice
• Exploits can run pre-review
• Backdoors can be subtle

Prompt Testing:
• Test model behavior at scale
• Context-specific triggers
• Hard to separate from

hallucinations

Direct Questioning:
• Ask model about its

instructions
• Can be trained to lie
• Even with chain-of-thought
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Proposed Solution: Multi-Model Validation Framework

• Multiple independent LLMs evaluate each code solution
• Cross-model scoring identifies statistical outliers
• Consensus-based selection filters out potentially malicious code

Compiler
Generated 
Assembly

LLM 1 (M1)

Query (q)
Loop over x and swap 

when greater than 
max

LLM 2 (M2)

LLM n (Mn)

Source
code

LLM Ensemble

LLM Ensemble

M1

Cross-Model Scorer

Avg.
Score
12.2

9.5

17.8

Keep code 
with lowest 
cross-model 
perplexity

c1

M2 Mn

c1

c2

cn

c1

c2 c2

cn cn

Multi-model validation framework for detecting malicious code
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Token-Level Analysis of Malicious Code

• Base model identifies unusual token sequences
• Suspicious patterns emerge in injected code
• Statistical anomalies highlight potential backdoors

Per-token likelihood scores for malicious HTML example
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Conclusions & Future Directions

• Thompson’s insights on compiler trust extend to modern
LLM-based code generation in concerning ways

• Neural weights provide broader attack surface than compiler
binaries

• Statistical validation through model consensus offers promising
defensive strategy

• Future work: Developing robust cross-model validation
techniques

Thanks for listening!
Questions?
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