
Designing LLM-Resistant Programming Assignments: Insights
and Strategies for CS Educators

Bradley McDanel
Franklin and Marshall College

Lancaster, PA, USA
bmcdanel@fandm.edu

Ed Novak
Franklin and Marshall College

Lancaster, PA, USA
enovak@fandm.edu

Abstract
The rapid advancement of Large LanguageModels (LLMs) like Chat-
GPT has raised concerns among computer science educators about
how programming assignments should be adapted. This paper ex-
plores the capabilities of LLMs (GPT-3.5, GPT-4, and Claude Sonnet)
in solving complete, multi-part CS homework assignments from
the SIGCSE Nifty Assignments list. Through qualitative and quanti-
tative analysis, we found that LLM performance varied significantly
across different assignments and models, with Claude Sonnet con-
sistently outperforming the others. The presence of starter code and
test cases improved performance for advanced LLMs, while certain
assignments, particularly those involving visual elements, proved
challenging for all models. LLMs often disregarded assignment re-
quirements, produced subtly incorrect code, and struggled with
context-specific tasks. Based on these findings, we propose strate-
gies for designing LLM-resistant assignments. Our work provides
insights for instructors to evaluate and adapt their assignments in
the age of AI, balancing the potential benefits of LLMs as learning
tools with the need to ensure genuine student engagement and
learning.

CCS Concepts
• Social and professional topics → Model curricula; • Soft-
ware and its engineering → Software creation and management;
• Computing methodologies→ Natural language generation.

Keywords
LLM code generation, assignment design, CS education, AI-resistant
assignments, programming pedagogy

ACM Reference Format:
Bradley McDanel and Ed Novak. 2025. Designing LLM-Resistant Program-
ming Assignments: Insights and Strategies for CS Educators. In Proceedings
of the 56th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701872

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701872

1 Introduction
The rapid advancement and publicity of Large Language Models
(LLMs) like ChatGPT, Co-Pilot, Gemini, Claude Sonnet, and oth-
ers has raised a critical question in computer science education:
“Can ChatGPT do my homework?” Asked by both students and
instructors, this question represents a fundamental shift in how
students might approach programming assignments and how edu-
cators should adapt their pedagogy. While LLMs can indeed solve
many basic programming tasks, this capability shouldn’t diminish
the importance of students mastering these fundamental concepts.
Understanding core programming principles remains crucial for de-
veloping the problem-solving skills needed to tackle more complex
challenges that current LLMs cannot address.

While previous studies have shown that generative AI and LLM
technologies are proficient at modular, constrained programming
tasks, their effectiveness on comprehensive, multi-part CS assign-
ments remains less thoroughly explored [1, 3, 5, 10].

This position and curricula initiative paper analyzes the ability
of LLMs to solve large-scope undergraduate programming assign-
ments in an effort to make suggestions for “best practices” in the
design of such assignments in the current LLM era. To identify best
practices, we examine the capabilities of LLMs, specifically GPT-3.5,
GPT-4o, and Claude Sonnet, in solving exemplary CS homework
assignments curated in the SIGCSE "nifty assignments" list [14].
Our study is the first to examine performance of LLMs on the
nifty assignments, which are large-scale, full-scope assignments,
generally viewed by the community as high-quality. Full-scope
assignments are important to study because they more accurately
reflect the complexity of real-world programming tasks. Moreover,
the uniqueness of these assignments makes them less likely to be
heavily represented in LLMs’ training data, unlike common coding
patterns or standard algorithms frequently found online. Further-
more, we identify the specific failure modes of LLMs working these
problems and highlight those as suggestions for best practices.

The integration of LLMs into computer science education presents
significant challenges for traditional assessment methods and learn-
ing approaches. While these tools can assist with debugging, pro-
vide explanations of complex concepts, and help generate test cases,
they can also enable academic dishonesty by effectively solving
typical homework assignments. Conversely, using LLMs to gener-
ate entire solutions or blindly copy-pasting code without under-
standing can be detrimental to learning [11]. Our challenge lies in
harnessing the benefits of LLMs while preventing their misuse in
ways that undermine the learning process. We base our curricula
initiative on three key research questions:

https://orcid.org/0000-0001-6684-8918
https://orcid.org/0000-0002-2204-1546
https://doi.org/10.1145/3641554.3701872
https://doi.org/10.1145/3641554.3701872

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Bradley McDanel and Ed Novak

Predators and Prey:
 Fish eats Prawn
 Limpets eats Seaweed
 Prawn eats Zooplankton

date, armed_with, city
2015, gun, Shelton
2017, knife, La Marque
2018, unarmed, Sallisaw

A
ss

ig
nm

en
t

Le
ng

th

Short
1 page

Long
10+

pages

Visual Complexity

Simple
text only

Moderate
interactive elements; supplied graphics

Intricate
custom

graphics

DNA ‘20

Police Shootings ‘23

Food Web Zombies ‘22

Wordle ‘22
Spelling Bee ‘22

Enigma Machine ‘23

Sankey Diagrams ‘21

Figure 1: Spectrum of nifty programming assignments across visual complexity and assignment length.

(1) How do different LLMs perform qualitatively when attempt-
ing to solve complete, multi-part SIGCSE nifty assignments?
What are the common patterns, challenges, and ethical con-
cerns that emerge?

(2) Quantitatively, how does performance vary across different
LLMs (ChatGPT, GPT-4o, Claude Sonnet) and input configu-
rations (e.g., presence of starter code, test cases, etc.) when
solving these comprehensive assignments?

(3) Based on both qualitative and quantitative findings, what
strategies can instructors employ to design assignments that
promote genuine learning while being resistant to trivial
LLM solutions?

To address these first two questions, and ultimately form a po-
sition for the third one, we employ a mixed-methods approach
combining qualitative analysis of LLM interactions with system-
atic quantitative evaluation across multiple nifty assignments. We
examine LLM performance under various conditions, including dif-
ferent prompt complexities and the presence of starter code or test
cases. Our analysis identifies key challenges LLMs face in solving
comprehensive programming assignments and provides practical
strategies for educators to design LLM-resistant tasks. To foster
further research, our codebase and results (including LLM gen-
erated assignment solutions) are available at https://github.com/
BradMcDanel/cs-assignment-llm-analysis

2 Selected Nifty Assignments
Figure 1 illustrates the range of assignments considered in our
study, mapped across dimensions of visual complexity and assign-
ment length. In this study, we focused on Python assignments from
2020 to 2023 due to the language’s prevalence in introductory com-
puter science courses. Our selection process aimed to capture a
diverse set of assignments that represent various complexity levels
and educational objectives within contemporary CS education. We

included pure text-based assignments, like DNA, as well as data
analysis tasks and graph-based problems. This variety allows us to
explore how LLMs perform across different types of programming
challenges that students might encounter.

3 Qualitative Analysis
To understand how LLMs handle typical programming assignments,
we conducted a systematic analysis using a curated set of python
SIGCSE nifty assignments [14]. We aim to simulate the behavior of
students that might engage with LLMs through a web interface in
a passive and intellectually shallow way. All trials are carried out
using the ChatGPT web interface (http://chatgpt.com), and prompt-
ing consists of simply copy-and-paste-ing the entire assignment
instructions as input.

Our analysis examines the initial LLM responses, the quality of
generated code, types of errors encountered, and the effectiveness
of follow-up prompts. By exploring these aspects, we aim to identify
challenges students might face when using LLMs for homework
assistance and improve our own understanding of the limitations
of LLMs in comprehending multi-part programming assignments.

3.1 DNA
This assignment asks students to write a python program that
analyzes DNA sequences. Specifically, the input to the program is
a DNA sequence (a TXT file containing a string consisting of ‘A’
‘G’ ‘T’ and ‘C’ characters) and the task is to identify short tandom
repeats (STRs), which are short repetitions in the given DNA string.

This assignment was very easy for ChatGPT to complete. The
LLM output an explanation of the code (unprompted) and a 50 line
python program which appears perfectly correct, passing all of
the provided test cases. As is typical of LLMs, the solution code
provided is terse and uses advanced language features, even though

https://github.com/BradMcDanel/cs-assignment-llm-analysis
https://github.com/BradMcDanel/cs-assignment-llm-analysis
http://chatgpt.com

Designing LLM-Resistant Programming Assignments: Insights and Strategies for CS Educators SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

the assignment instructions and context suggest that students are
unlikely (or not allowed) to use such features. For example:

for i in range(seq_len):
count = 0
while sequence[i + count * sub_len : i +

↩→ (count + 1) * sub_len] == subsequence:
count += 1

longest_run = max(longest_run , count)

Read the CSV file
with open(csv_filename , 'r') as csvfile:

reader = csv.DictReader(csvfile)
str_sequences = reader.fieldnames [1:]
dna_profiles = list(reader)

3.2 Sankey Diagrams
This assignment asks students to make Sankey diagrams which are
useful for visualizing many-to-many relationships, especially those
in which items are sorted into different categories, or outcomes.
The assignment relies on a data file and a basic graphics library
provided by the author called SimpleGraphics.py.

Immediately upon encountering the assignment instructions
ChatGPT states that it cannot solve the entire problem, but it would
instead give only “an outline of how you might approach it.” This
outline is indeed a great start. But, ChatGPT read the instructions
well enough tomake calls to the SimpleGraphics library. So, the code
provided will not run without it. Interestingly, ChatGPT provides
code that makes a call sg.window(500, 400), which does not exist
in the library. When prompted to remove that particular function
call ChatGPT claimed to do so, but gave code that in fact still
included it. When prompted again, more explicitly, it did replace
sg.window(500, 400)with sg.canvas(500, 400). However, this
function also does not seem to exist in the SimpleGraphics library.
So, the code that ChatGPT gave doesn’t run. A diligent student
would be forced to engage intellectually in order to make progress
on the assignment beyond this point.

3.3 Food Web Zombies
This assignment asks students to make a simple graph representing
the food chain of a particular ecosystem given as a CSV file (e.g.,
Sparrow eats Grosshopper, Grasshopper eats Plants, etc.).

This assignment was completed about 80% by ChatGPT immedi-
ately after prompting. Several input files are provided along with
their expected outputs. By comparing the provided expected out-
put files with the output of ChatGPT, further minimal prompt-
ing allowed the LLM to complete the task about 95% successfully.
The assignment notes that listing the Herbivores, Omnivores, and
Carnivores earns an A+. Despite this task being somewhat trivial,
ChatGPT could not solve it successfully even after several back-
and-forth prompts. It would begin undoing and re-writing previous
lines of code unnecessarily and incorrectly; making an improve-
ment in one area while at the same time making another area of
the code worse.

Interestingly, the point of this assignment is to implement a
graph, which ChatGPT completely ignores in favor of the built-in
python collections such as lists, dictionaries, and tuples. Assessing

the output might indicate a high grade, but assessing the code might
result in a failing grade due to this deviation from the spirit of the
assignment.

3.4 Enigma Machine Simulator
This assignment asks students to implement a simulation of the
famous WWII enigma cryptography machine. It is the largest and
most complex assignment in our set.

This assignment was difficult for ChatGPT to complete. The
length of the assignment instructions meant that the LLM insisted
on giving snippets of code that solved parts of the problem. After
several interactions back-and-forth, it became clear that the LLM
would not finish the task completely as it began undoing and redo-
ing previous lines of code as it added new lines in different sections.
Again a diligent student would have to engage with the assignment
as well as the unfinished solution code provided by the LLM.

3.5 Fatal Police Shootings
This assignment asks students to analyze a dataset of police shoot-
ings to explore potential relationships between racial demographics
and fatal encounters with law enforcement. The students are asked
to answer several questions in writing, (e.g., “What are the column
headers in the data set?”) as well as add to starter code.

For this assignment we analyze the premium GPT-4o perfor-
mance to simulate a student that pays for the premium “ChatGPT
Plus” service. Generally, the LLM gives code that solves the prob-
lem, and writes natural language responses to all of the questions.
Interestingly, it incorrectly modifies the starter code, editing the
index numbers used to parse the information from each row of the
data set. This mistake means that the output of the program is tech-
nically wrong, even though the structure of the code is generally
correct. Upon further investigation we found that the assignment
actually had the header mislabeled in the CSV file, which caused
the issue. Generally, we assume it would be unfair to deduct points
for students that had code mistakes related to this mislabeling. So,
we deemed it inappropriate to penalize either students or the LLM
for code errors arising from this unintended discrepancy.

Despite the fact that this program involves a serious and poten-
tially controversial topic (fatal police by racial demographics), the
LLM does not resist solving it.

4 System Implementation
To ensure a systematic and reproducible approach in our investi-
gation, we also developed a robust experimental framework. This
section details our methodology, the variables under investigation,
and the tools employed in our study.

4.1 Experimental Design
Our study focuses on three state-of-the-art LLMs: GPT-3.5, GPT-4o,
and Claude Sonnet. To comprehensively evaluate their performance
across various scenarios, we designed a multifaceted experiment
that manipulates several key variables. Table 1 summarizes these
variables and their respective levels.

• LLM: We selected three LLMs (GPT-3.5, GPT-4o, and Claude
Sonnet) students might use to compare their capabilities in
generating programming solutions.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Bradley McDanel and Ed Novak

Table 1: Experimental variables and their levels

Variable Levels
LLM GPT-3.5, GPT-4o, Claude Sonnet
Prompt Complexity Simple, Advanced
Starter Code Excluded, Included
Test Code Excluded, Included

• Prompt Complexity: We varied the complexity of the
prompts given to the LLMs. The simple prompt just asked
the LLM to solve the assignment, while the advanced one
used chain-of-thought prompting [15].

• Starter Code: We tested scenarios with and without starter
code, which, when included, provided an initial code struc-
ture for the LLM.

• Test Code: We experimented with including and excluding
test code in the LLM prompts.

For each combination of these variables, we submitted multiple
programming assignments to the LLMs. To improve statistical reli-
ability, we performed three iterations per setting, resulting in 720
total code solutions generated (6 assignments × 5 runs per setting ×
3 LLMs × 2 prompt settings × with or without starter code × with
or without test code). We use a temperature of 0.7 for all settings
as this generally leads to more deterministic and stable output [9].

4.2 Test Case Development
An important aspect of our methodology was the development of
comprehensive test cases for each assignment. As the original as-
signments did not come with pre-defined test suites, we crafted our
own using pytest, a popular testing framework for Python. These
test cases were designed to thoroughly evaluate the correctness
and completeness of the LLM-generated solutions, covering various
edge cases and potential pitfalls. For graphics-based assignments
(e.g., Wordle, Enigma, ...), we mocked the GUI during testing to
simulate button presses.

4.3 Generation and Testing Process
To facilitate the large-scale evaluation required for our study, we
developed an automated submission and evaluation pipeline. This
system streamlines the process of preparing the input for each
LLM, including the assignment description (using pytesseract [8]
to go from pdf to text), any starter code (when applicable), and
test code (when applicable). It then submits the prepared input to
the appropriate LLM via API calls, receives and parses the LLM’s
response, executes the generated code against our test suite using
pytest, and calculates and records the test pass rate percentage
for each submission. This automation ensures consistency across
all trials and allows for efficient processing of a large number of
assignments across various experimental conditions. Note that,
unlike in Section 3, the LLM is given only a single response to solve
the assignment in its entirety instead of an iterative milestone-based
approach. This is due to the lack of human guidance/intervention
over multiple rounds of messages.

dna wordle police-shootings enigma food-webs spelling-bee0

20

40

60

80

100

Pa
ss

 R
at

e
(%

)

Pass Rate for Each Model (Advanced Prompt + Including Code/Tests)
gpt-3.5-turbo
gpt-4o
claude-sonnet-3.5

Figure 2: The percentage of unit tests passed for each assign-
ment and LLM. Error bars represent the standard deviation
across five runs per setting.

gpt-3.5-turbo gpt-4o claude-sonnet-3.50

20

40

60

80

100
Pa

ss
 R

at
e

(%
)

Impact of Input Files on Model Performance
Without Starter Code, Without Test Code
Without Starter Code, With Test Code
With Starter Code, Without Test Code
With Starter Code, With Test Code

Figure 3: Impact of input files on LLM performance across
different configurations. Error bars represent standard devi-
ation across 6 assignments × 5 samples per assignment.

5 Quantitative Analysis
Our experimental framework yielded a rich dataset, allowing for a
comprehensive analysis of LLM performance across various pro-
gramming assignments and input conditions. This section presents
our findings, focusing on two key aspects: the relative difficulty
of assignments across LLMs and the impact of input code on LLM
performance.

5.1 Assignment Difficulty Across LLMs
Figure 2 illustrates the percentage of unit tests passed for each
assignment across the three LLMs evaluated: GPT-3.5-turbo, GPT-
4o, and Claude Sonnet-3.5. These results are using the advanced
prompt and including both starter code and test code. For each
assignment and LLM combination, we conducted five independent
runs; the bars represent the mean performance, while the error bars

Designing LLM-Resistant Programming Assignments: Insights and Strategies for CS Educators SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Prompt Engineering
model input

Although popular, it’s unclear what
prompting techniques consistently
perform better. We find that
generally any form of re-prompting
is effective. Critical analysis of LLM
output is also important.

Strategy: Give students specific
guidance on effective interactions
with LLMs that promote learning.
Some tips about prompt design may
be helpful, but overall, intentional
back-and-forth interaction is usually
the most effective approach.

Terse Code
model output

LLMs often use eccentric and
unnecessarily terse code such as
python “comprehensions” and
ternary operators.

Strategy: Explicitly dis-allow certain
advanced features of the
programming language. Know and
look for those language features as
evidence of students using an LLM to
produce code which they did not
genuinely write and which they likely
do not understand.

Dev. Environment
assignment

LLMs assume the user is able to
copy and past their code into a
working (compiling, running) project
in a correctly configured
development environment. It often
gives code snippets and functions in
a vague context that is clear to
programming experts, but may be
confusing or error-prone for novice
programmers. Assignment details
such as multiple source code files,
data files, specific directory
hierarchies, properly installed
dependencies, and other
“environment configuration” details
are likely to be a stumbling block for
students relying on an LLM too
much.

Strategy: Encourage students to
build skills in areas that LLMs are
weak such as Dev-Ops. Consider
creating assignments that
incorporate more elaborate
development environment and
deployment configurations to push
students to engage with those
concepts and solutions.

Solution Space
assignment

Assignments that limit the solution
space by giving detailed, clear, and
explicit instructions are challenging
for LLMs. Open-ended and
greenfield projects are easier. LLMs
also tend to over-contribute,
providing unnecessary solutions to
aspects of the problem that are not
required.

Strategy: Create assignments in
which the intended solution is
elaborate, nuanced, and precise.
Avoid well-known cliché problems
and very open-ended problems (e.g.,
reverse a string). Watch out for
submissions that go “above-and-
beyond” without reason.

Alignment
model output

Sometimes LLMs will resist or refuse
to complete the assignment. This
might be because the LLM
recognizes it as a homework
assignment and raises ethical issues,
because the scope of the assignment
is too large, or because the
assignment pertains to controversial
issues. These are generally
becoming known as model
“alignment” issues.

Strategy: Create larger scale
assignments and choose to engage
with ethical questions and
controversial topics.

Input Limitations
model input

LLMs have a limited context
window. Even for models with 1M
token or larger windows, it is trivial
to overwhelm. Current era LLM web
interfaces limit the number of files
that can be uploaded in the lifetime
of a conversation (e.g., 25 for
Anthropic and 20 for OpenAI).

Strategy: Include dictionary files,
data files, and generally, many files
in assignments.

Graphics
assignment

When the input is an image or the
solution is defined as a correct
looking visual, current era LLMs
literally do not have a way to
interpret such information and
struggle. Due to the fuzzy nature of
correctness often found in graphical
programs, they are usually less test-
able as well exacerbating the
challenges for LLMs.

Strategy: Incorporate visual
components into assignments.

Multi-hop Reasoning
model output

“Multi-hop reasoning” tasks are
those that are composed of many
smaller steps; each individually very
simple, but combine to perform
elaborate computation. For example,
a sequence of string manipulations
such as, “convert to lower case”,
“replace all e's with a's”, “reverse”,
etc. Such tasks cause issues for
LLMs.

Strategy: Incorporate elaborate
multi-hop reasoning such as
elaborate sequences of state change

Insights, Guidelines, and Strategies

Figure 4: Insights, guidelines, and strategies. Based on our experiences using LLMs to solve assignments in this study, we
present several insights and corresponding strategy suggestions for educators.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Bradley McDanel and Ed Novak

indicate the standard deviation across these runs, providing insight
into the consistency of LLM performance.

The results reveal a clear hierarchy in LLM performance across
different assignments. Sonnet-3.5 consistently outperforms both
GPT-3.5-turbo and GPT-4o across all tasks, achieving a 100% pass
rate for the dna and food-webs assignments across all five iterations.
Additionally, GPT-4o performs significantly better than GPT-3.5-
turbo.

Notably, the food-webs assignment presents a stark contrast in
LLM capabilities, with Sonnet achieving a perfect score while GPT-
4o achieved a mean test pass rate of 40%. This may indicate that
Sonnet is better at analyzing the test code and ensuring the output
of the generated code matches the expected test input. This assign-
ment required outputting strings in a specific format. Generally,
GPT-4o did a reasonable job on the assignment, but often failed all
tests because the output did not match perfectly. The spelling-bee
assignment appears to be the most challenging across all LLMs,
with the performance of Sonnet dropping to approximately 55%,
GPT-4o achieving 30%, and GPT-3.5-turbo achieving 15%.

5.2 Impact of Starter Code and Test Code
Figure 3 presents an aggregate analysis on the impact of the pres-
ence or absence of starter code and test code on assignment pass
rate. We try all four combination of settings at 3 generation at-
tempts per sample. We use the advanced prompt for each setting
and take the average pass rate across all assignments.

Generally, we observe improved performance when additional
context (either starter code or test code) is provided to the LLMs.
Sonnet-3.5 demonstrates the most dramatic improvements, with
pass rates increasing from around 30% without additional context to
nearly 90% with both starter and test code. GPT-4o shows substan-
tial variation across test performance, with its best results achieved
when given starter code but without test code.

These findings highlight the importance of adding additional
context to prompts in maximizing the performance of more ad-
vanced LLMs like GPT-4o and Sonnet-3.5. The provision of starter
code appears to be particularly beneficial, possibly by providing
a structural framework that guides the LLMs in generating more
accurate and complete solutions. The addition of test code further
enhances performance for Sonnet-3.5, indicating its general use-
fulness. However, the impact varies across LLMs, emphasizing the
need for careful consideration when designing prompts and input
configurations for different LLMs in programming tasks.

6 Related Work
Chen et. al. introduce one of the first successful code writing LLMs,
Codex [3], which powers GitHub Copilot. Their work was one of
the first to demonstrate that LLMs would be able to write code. The
original codex system was designed to generate individual python
functions based on a provided doc-string (descriptive comments)
and function signature. They found that codex struggledwith longer
sequences of instructions, and higher-level instructions.

As LLMs have improved, more research is carried out to assess
their ability to solve CS-Ed. programming tasks. Savelka et. al.

showed that earlier LLMs were capable of solving individual, small-
scope programming problems, but could not pass an entire course
[13]. Their more recent work showed that GPT-4 could generally
complete any task found in a typical programming course [12]. This
rapid improvement has led to both opportunities and challenges in
CS education [1, 5, 10].

Our work focuses on how to write assignments that are not
trivially solvable by LLMs. Such assignments will push students to
engage intellectually. To the best of our knowledge, there are not
currently any advisable “best practices” for writing assignments
that are resistant to LLMs. Best practices are particularly relevant as
the CS-Ed research community adapts to the increasing capabilities
of LLMs [2].

Closely related to our work is that of Cipriano et. al. [4] in
which undergraduate level Object Oriented Programming (OOP)
problems are fed into GPT-3 and the responses are assessed. The
authors found that GPT-3 can generally write code that solves OOP
problems, but sometimes does make logical and syntax mistakes.
Usually, some iteration is necessary in prompting the LLM to get
exactly correct solution code. And sometimes the authors manually
make small edits in the given solutions.

Denny et. al. design “prompt problems” for students. These prob-
lems present input->output pairs and challenges students to write
prompts for an LLM to generate code that solves the problem; as
opposed to writing code directly themselves [6]. [11] suggests that
students use an A.I. programming “co-pilot”, but that they con-
stantly practice critical thinking of the output it suggests. While we
agree that a new layer of abstraction for programming is exciting,
we focus on the failure modes of LLMs and how instructors can
design assignments that are resistant to LLMs.

The question of whether students can ascertain reasonable help
from an LLM (instead of an instructor) for programming assign-
ments has been studied as well [7]. Interestingly, it’s challenging
to prevent LLMs from simply outputting the correct solution code
and explaining it even when prompted not to.

7 Conclusion
The integration of Large Language Models (LLMs) in undergrad-
uate computer science education presents both opportunities and
challenges. Over-reliance on LLMs for homework solutions can
undermine the development of critical problem-solving skills. Our
study, which analyzed LLM performance on exemplary CS assign-
ments, reveals key insights into the capabilities and limitations
of these LLMs in educational contexts. Figure 4 summarizes these
insights and presents corresponding strategy suggestions for educa-
tors seeking to create assignments that drive increased student en-
gagement in the LLM era. By implementing these strategies, such as
incorporating visual components, emphasizing dev-ops skills, and
designing assignments with precise solution constraints, educators
can craft more robust and intellectually stimulating programming
tasks to engage their students in the LLM era.

While our study provides valuable insights, limitations include
the rapid pace of LLM development, potential biases in assignment
selection, and the need for broader testing across different educa-
tional contexts. Future work should explore these areas to further
refine LLM-resistant assignment strategies.

Designing LLM-Resistant Programming Assignments: Insights and Strategies for CS Educators SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James

Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (<conf-loc>, <city>Toronto ON</city>, <country>Canada</country>, </conf-
loc>) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,
500–506. https://doi.org/10.1145/3545945.3569759

[2] Rina Diane Caballar. 2024. AI Copilots Are Changing How Coding Is Taught. IEEE.
https://spectrum.ieee.org/ai-coding

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]
https://arxiv.org/abs/2107.03374

[4] Bruno Pereira Cipriano and Pedro Alves. 2023. GPT-3 vs Object Oriented
Programming Assignments: An Experience Report. In Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education V. 1
(<conf-loc>, <city>Turku</city>, <country>Finland</country>, </conf-loc>)
(ITiCSE 2023). Association for Computing Machinery, New York, NY, USA, 61–67.
https://doi.org/10.1145/3587102.3588814

[5] Paul Denny, Sumit Gulwani, Neil T. Heffernan, Tanja Käser, Steven Moore,
Anna N. Rafferty, and Adish Singla. 2024. Generative AI for Education (GAIED):
Advances, Opportunities, and Challenges. arXiv:2402.01580

[6] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (<conf-loc>,
<city>Portland</city>, <state>OR</state>, <country>USA</country>, </conf-
loc>) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
296–302. https://doi.org/10.1145/3626252.3630909

[7] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to

Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACM Con-
ference on International Computing Education Research - Volume 1 (<conf-loc>,
<city>Chicago</city>, <state>IL</state>, <country>USA</country>, </conf-
loc>) (ICER ’23). Association for Computing Machinery, New York, NY, USA,
93–105. https://doi.org/10.1145/3568813.3600139

[8] Samuel Hoffstaetter and contributors. 2024. pytesseract. https://github.com/h/
pytesseract. GitHub repository.

[9] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for
Controllable Generation. CoRR abs/1909.05858 (2019). arXiv:1909.05858 http:
//arxiv.org/abs/1909.05858

[10] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative AI
Revolution in Computing Education. In Proceedings of the 2023 Working Group
Reports on Innovation and Technology in Computer Science Education (<conf-
loc>, <city>Turku</city>, <country>Finland</country>, </conf-loc>) (ITiCSE-
WGR ’23). Association for Computing Machinery, New York, NY, USA, 108–159.
https://doi.org/10.1145/3623762.3633499

[11] Arun Raman and Viraj Kumar. 2022. Programming Pedagogy and Assessment in
the Era of AI/ML: A Position Paper. In Proceedings of the 15th Annual ACM India
Compute Conference (Jaipur, India) (COMPUTE ’22). Association for Computing
Machinery, New York, NY, USA, 29–34. https://doi.org/10.1145/3561833.3561843

[12] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle
to Pass Assessments in Higher Education Programming Courses. In Proceedings
of the 2023 ACM Conference on International Computing Education Research -
Volume 1 (Chicago, IL, USA) (ICER ’23). Association for Computing Machinery,
New York, NY, USA, 78–92. https://doi.org/10.1145/3568813.3600142

[13] Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr.
2023. Can Generative Pre-trained Transformers (GPT) Pass Assessments in
Higher Education Programming Courses?. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Fin-
land) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
117–123. https://doi.org/10.1145/3587102.3588792

[14] SIGCSE. 2024. Nifty Assignments. http://nifty.stanford.edu/. Accessed Spring
and Summer of 2024.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

https://doi.org/10.1145/3545945.3569759
https://spectrum.ieee.org/ai-coding
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3587102.3588814
https://arxiv.org/abs/2402.01580
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3568813.3600139
https://github.com/h/pytesseract
https://github.com/h/pytesseract
https://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3561833.3561843
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3587102.3588792
http://nifty.stanford.edu/

	Abstract
	1 Introduction
	2 Selected Nifty Assignments
	3 Qualitative Analysis
	3.1 DNA
	3.2 Sankey Diagrams
	3.3 Food Web Zombies
	3.4 Enigma Machine Simulator
	3.5 Fatal Police Shootings

	4 System Implementation
	4.1 Experimental Design
	4.2 Test Case Development
	4.3 Generation and Testing Process

	5 Quantitative Analysis
	5.1 Assignment Difficulty Across LLMs
	5.2 Impact of Starter Code and Test Code

	6 Related Work
	7 Conclusion
	References

