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Abstract
Departing from traditional quantization for a fixed quantiza-

tion resolution, we describe a novel architecture approach to
support inference at multiple resolution deployment points. A
single meta multi-resolution model with a small footprint can
select from multiple resolutions at runtime to satisfy given re-
source constraints. The proposed scheme relies on term quan-
tization to enable flexible bit annihilation at any position for a
value in a context of a group of values. This is in contrast to
conventional uniform quantization which always truncates the
lowest-order bits. We present multi-resolution training of the
meta model and field-configurable multi-resolution Multiplier-
Accumulator (mMAC) design. We compare our design against
a traditional MAC design and evaluate the inference perfor-
mance on a variety of datasets including ImageNet, COCO,
and WikiText-2.

1. Introduction
Deep Neural Network (DNN) quantization has received much
attention in recent years due to its potential to address the
growing computational costs of DNN inference. By quantiz-
ing a 32-bit full-precision models to a lower resolution (e.g., 8-
bit fixed-point), quantized DNNs can be implemented using
more efficient hardware, such as 8-bit Multiplier-Accumulator
(MAC) units instead of floating-point units, leading to signifi-
cant improvements in energy efficiency, latency, and storage
requirements. However, there is an inherent trade-off between
the performance (e.g., classification accuracy) and the preci-
sion of a DNN under a fixed quantization regime. Due to
this trade-off, quantization methods often present multiple
distinct models trained at different precisions (e.g., from 8-bit
to 4-bit fixed-point bit-widths) that achieve varying degrees of
performance/cost trade-off.

Unfortunately, conventional hardware is designed to only
natively support a single precision, such as 8-bit fixed-point,
and therefore can not efficiently implement quantized models
across a wide range of precisions to support such a perfor-
mance/cost trade-off. For instance, while an 8-bit MAC can
be used to multiply two 4-bit numbers, the upper-half of the
MAC will only be multiplying zeros bits.

To address this concern, we present a multi-resolution
Multiplier-Accumulator (mMAC) design that inherently sup-
ports multiple resolutions. The mMAC operates on only the
non-zero power-of-two terms in a value. For example, for
the value 20 = 000101002, mMAC only operates on the two
terms, 24 and 22, corresponding to the two nonzero bits in the

unsigned binary representation of the value. The approach
also generalizes to signed-digit representations (SDRs) which
can have both positive and negative terms. Consequently, the
mMAC takes fewer cycles to multiply lower-resolution num-
bers (i.e., numbers with few non-zero terms) and more cycles
to multiply higher-resolution numbers with more non-zero
terms. Note that, unlike conventional uniform quantization
where resolution is tied to the bit-width of the representa-
tion, our mMAC design defines resolution as the number of
non-zero power-of-two terms in values, regardless of their
positions in the encoding.

To support field-configurable multi-resolution inference at a
deployment point, we have developed a multi-resolution DNN
training approach that jointly optimizes many sub-models
across a wide range of resolutions (shown on the left of Fig-
ure 1). The result of this joint-optimization training is a meta
multi-resolution model capable of supporting multiple resolu-
tions at runtime, with two novel properties: storage sharing
across the sub-models, as the same non-zero terms (which
need not be adjacent) for lower-resolution sub-models also ap-
pear in higher-resolution sub-models, and computation shar-
ing as all sub-models can share the same mMAC computation
engine. In both training and inference, for the same set of
DNN weights, we simply adjust the number of leading non-
zero terms to implement different quantization resolutions
(i.e., sub-models).

The multi-resolution model is deployed with the proposed
mMAC system, shown in the middle of Figure 1. A user (or
other selection mechanism) can select which sub-model to
use based on the current resource constraints in the perfor-
mance/cost trade-off space (right of Figure 1). Configuring the
system to use a low-budget sub-models is achieved by simply
dropping more low-order power-of-two terms from the meta
multi-resolution model. Since a low-resolution sub-model
has fewer terms, the hardware system using mMACs will per-
form the inference computation at a lower computation cost.
Therefore, mMAC can process these lower-resolution infer-
ence computations at an increased rate. The multi-resolution
joint training procedure is critical to the success of this method,
as otherwise, the multi-resolution hardware would incur high
cost, and the performance of the lower-budget sub-models
would be unacceptably poor. The main contributions of the
paper are:
• A multi-resolution hardware system with mMAC for sup-

porting field-configurable multi-resolution DNN inference.
The mMAC computes the dot products by processing only
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Figure 1: A multi-resolution model (left) contains multiple sub-models with varying power-of-two term budgets leading to dif-
ferent degrees of quantization. Here, a group of 4 weight values (25, 4, 23, 13) are depicted with 5 different term budgets. In
a hardware deployment (middle) the multi-resolution model is implemented using an mMAC system designed around a multi-
resolution Multiplier-Accumulator (mMAC) which all resolutions can share. The proposed multi-resolution approach enables an
efficient cost/performance trade-off to suit the current runtime conditions (right) by selecting the appropriate sub-model with a
corresponding resolution.

the non-zero terms in weight and data values.
• A multi-resolution training paradigm that supports efficient

training of multiple sub-models that share power-of-two
terms. The method uses a teacher-student approach to train
two sub-models at each iteration.

• Sub-model configuration at inference to meet the current
resource constraints which translates to simply adjusting
the number of leading terms to use in learned weights. The
multi-resolution model has a minimum memory footprint,
as the sub-model instances share the same leading power-
of-two terms across the model weights. In addition, these
sub-models can efficiently share the same mMAC.

2. Background and Related Work
In Section 2.1, we discuss related work on neural networks
that can dynamically trade-off computation for model perfor-
mance (e.g., accuracy). After that, we discuss the various
types of quantization that have been used for DNNs in Sec-
tion 2.2. Finally, in Section 2.3, we provide an overview of
the Signed-digit Representation (SDR), which we use instead
of the conventional Unsigned Binary Representation (UBR),
and review specialized hardware accelerators which employ
SDR for DNN inference.

2.1. DNN Supporting Performance/Cost Trade-off

In recent years, there has been a trend towards designing
dynamic neural network to achieve an on-demand perfor-
mance/cost trade-off. Many approaches achieve this trade-off
by skipping parts of the inference computation based on the
complexity of the input sample. In [41, 19, 33], the authors
add early-exit branches to a DNN, so that easier input samples
can exit at an earlier point in the network with high confidence.
BlockDrop [44] and SkipNet [43] selectively drop the convolu-
tional blocks in ResNet [16] architecture on a per-sample basis.
In [31], the authors propose an approach to train a single model
which can generate sub-models of different widths (e.g., num-

ber of channels in each convolutional layer). During runtime,
the number of activated channels in a convolutional layer can
be adjusted dynamically based on the on-device resource bud-
get. Once-For-All [4] allows for a significantly larger number
of DNN architectural settings by exploring a greater design
space (e.g., depth, width, kernel size, and resolution) and using
a teacher-student training paradigm. In contrast to these works,
where the derived sub-models share weight values, our work
proposes a complementary multi-resolution DNN approach
by sharing weight terms. Our approach allows for greater
sharing flexibility in weight representations and therefore a
better performance/cost trade-off.

2.2. Types of Quantization

Quantization [8, 9, 14, 46, 20, 37, 24] has been studied ex-
tensively for reducing the associated storage, I/O, and com-
putation costs of DNNs. Several post-training quantiza-
tion methods have been proposed to quantize floating-point
weights after training, using 16-bit and 8-bit uniform quan-
tization (UQ), without dramatically impacting classification
accuracy [14, 12]. Recently, low-precision UQ approaches
(e.g., with less than 4 bits per value) have also been studied.
To mitigate the accuracy degradation caused by low-precision
weight and data, additional quantization-aware training [21] is
required to fine-tune the model weights. Figure 2(a)-(b) show
5-bit UQ and 2-bit UQ applied on four values.

Logarithmic quantization (LQ) is a more aggressive form of
quantization that works by rounding each value to the nearest
power-of-two term as shown in Figure 2(c) [35, 45]. This
allows for significantly more efficient inference, as fixed-point
multiplication in UQ can be replaced with bit shift operations
as each value has only a single power-of-two term. However,
due to the aggressive form of quantization, LQ typically suffers
from larger accuracy degradation than UQ, as the resolution
decreases exponentially as values gets larger.

Power-of-two term quantization (TQ) relaxes LQ by al-
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Figure 2: (a) 5-bit uniform quantization applied on four values.
(b) 2-bit uniform quantization takes only the two leading terms
(24 and 23) of the 5-bit uniform quantization in (a). (c) Logarith-
mic quantization uses only the largest term in each value.

lowing a term budget of one or more terms for values [27].
Unlike prior work that applied TQ in a post-training quantiza-
tion fashion [27], in this work, we propose a multi-resolution
training paradigm using TQ as our quantization function for
weights and data. We discuss TQ in greater detail in Section 3,
as it is the quantization scheme used throughout this paper.

2.3. DNN Hardware using Signed-digit Representations

Unsigned Binary Representations (UBRs) are a commonly
used positional encoding system, where each position is ei-
ther 0 or 1. By comparison, in Signed-digit Representations
(SDRs), each position can have a coefficient of {−1,0,1}.
Note that this means each digit in an SDR requires two bits: a
sign bit and a 0/1 bit. Allowing each position to have a neg-
ative coefficient leads to representations with fewer nonzero
digits. For instance, 27 (11011 in UBR) can be represented as
1001̄01̄ in SDR.1 SDRs have been extensively studied in the
past [3, 2, 13], but have received less attention in relation to
DNN hardware accelerators [6, 5, 36, 32, 15, 26].

Some recent works [1, 10, 39, 27] have observed that the
distribution of DNN weight values, leading to most values
having few nonzero terms, can be exploited to reduce the
computational cost of DNN inference. Specifically, multipli-
cation between a weight and data value can be decomposed
into exponent additions between power-of-two term-pairs in
the two values. Through this view, SDRs are an attractive
representation as they reduces the number of terms in each
value, leading to fewer term pairs. (In fact, it is known in
the literature that SDR can achieve the minimum number of
terms [22]). In this work, our proposed multi-resolution hard-
ware architecture (Section 5) is designed to support weight
and data values encoded in SDRs.

3. Term Quantization
In this section, we provide an overview of term quantization
(TQ), which is used throughout the paper. First, in Section 3.1,
we show how TQ can be applied to group of weights in a
DNN and discuss the associated quantization error based on
the distribution of weights. Then, in Section 3.2, we illustrate
how TQ can be applied to individual data values. Finally, we

1Here, 1̄ represents a negative coefficient (e.g., −20).
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Figure 3: Term quantization (TQ) applied to a group of size
g = 4 filter weights (top) and individual data values (bottom).

discuss the computational motivation for bounding the number
of terms in weight and data values through TQ in Section 3.3.

3.1. Term Quantization on Weight Groups

Term quantization (TQ) is a new quantization technique, pro-
posed in [27], which can be applied across a group of values
(with group size g) by keeping the leading α terms across all
values in the group. Figure 3(a)-(b) show how four weights
in a convolutional weight filter can form a group to be pro-
cessed by TQ. After applying TQ with a term budget of α = 8
(Figure 3(c)), two of the 20 terms are dropped such that only
8 nonzero terms remain across the values in the group. Fig-
ure 3(d) shows the weight group values after applying TQ.

Compared with rigid quantization schemes, such as uniform
quantization, where the terms can only be placed at certain
digit location, TQ allows for a much greater flexibility in al-
locating terms across the group. By allocating more terms
to larger values in the group and fewer terms to small val-
ues in the group, TQ achieves a much lower rounding error.
This term allocation property is especially useful for DNN
weights, as they are well approximated by a normal distribu-
tion. Figure 4(a) shows a histogram of the weights in the 13th
convolution layer in ResNet-18 [16]. Applying a Maximum
Likelihood Estimate (MLE) of a 1D normal distribution gives
N(0,0.03). Other layers in ResNet-18 follow a similar distri-
bution with σ between 0.01 and 0.04. Figure 4(b) shows the
average quantization error due to TQ for samples drawn from
a zero-mean normal distribution, with σ of 0.03, as a function
of the TQ group size. The quantization error rapidly decreases
as the group size goes from 1 to 4 and becomes flatter as the
group size reaches 16. Based on this analysis, we use a group
size of 16 for the rest of the paper, as it achieves most of the
benefit from weight grouping.

3.2. Term Quantization for Data Values

TQ can also be applied to an individual value by keeping the
leading β power-of-two terms in it. The bottom of Figure 3(e)-
(h) show how TQ is applied to values in data feature maps of a
Convolutional Neural Network (CNN). As shown in the figure,
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Figure 4: (a) The distribution of weights in the 13th convolu-
tional layer in ResNet-18 [16]. (b) The quantization error using
Term Quantization (TQ) with an average term budget of one
term per value as the group size is varied from 1 to 15.
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Figure 5: Term quantization of weight and data, followed by
dot-production computation on quantized values.

for the value 19 (10011), TQ with a term budget β = 2 would
quantize it to 18 (10010) by dropping the smallest 20 term
(denoted by the red slash). Unlike UQ, which always truncates
the low-order terms (e.g., 20) by reducing the bit-width, TQ
maintains a larger bit-width but reduces the number of ‘active’
terms in each value up to the term budget β . In Section 3.3, we
discuss the computation implications of limiting the number
of non-zero terms in data values.

3.3. Term-pair Multiplication Under Term Budget

Suppose we consider the dot-product computation between
a group of weights and a group of data values. We use the
follow terminologies and notations throughout the paper:
• group size (g)
• term budget (α) for a group of weights
• data term budget (β ) for individual data items (i.e., g = 1)
• term-pair budget (γ) is α×β

We note that the dot-product computation between term-
quantized weights and data involves γ term-pair multipli-
cations. Each term-pair multiplication amounts to an ad-
dition of the exponents in the two terms. An example is
given in Figure 5. Assume TQ with a term budget α = 2
and data term budget β = 1 is applied on a weight group
W = [w1,w2] = [2,5] = [21,22 + 20] and data values X =
[x1,x2] = [9,3] = [23 + 20,21 + 20], respectively. This pro-
duces the term-quantized weights W’ = [21,22] and the term-
quantized data X’ = [23,21]. The dot product between W’
and X’ is then computed by performing the following term-
pair multiplications: 21×23 +22×21 = 24 +23 = 24. This
dot product requires 2 term multiplications, which equals γ .
By limiting the number of leading terms in weights and data
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terms (yellow), and 8 terms (red). Smaller term budgets share
terms with all larger budget. Some smaller terms (e.g., 20) are
not used by any term budget and are effectively zero.

to a fixed group budget via TQ, we can bound the term-pair
computations needed for each value-level multiplication in a
convolutional layer, and further resulting in a adjustable im-
plementation cost. We utilize this term-pair budget γ = αβ

in the design of our multi-resolution Multiplier-Accumulator
(mMAC) discussed in Section 5.

4. Multi-resolution DNN
In this section, we illustrate how a single DNN can naturally
support multiple resolutions (i.e., term budgets) through the
use of TQ. First, in Section 4.1, we show how the terms in a
group of weights can be shared across multiple resolutions.
Then, in Section 4.2, we present a teacher-student training
algorithm to learn a meta multi-resolution DNN that supports
multiple resolutions via term sharing.

4.1. Multi-resolution Weight Groups

In Section 3, we discussed how a group of weights can be
quantized to meet a specific term budget α by dropping the
low-order power-of-two terms in the group. Here, we extend
this notion such that a single group of weights can support
multiple term budgets. Figure 6 depicts a multi-resolution
weight group for the same group of values in Figure 3, un-
der four term budgets: 2, 4, 6, and 8 terms. When a lower-
resolution term budget of α = 2 is selected, the top two leading
terms across the four values are kept (shown in the blue region),
resulting in the set of term-quantized values of [16,0,16,0].
In contrast, when a higher-resolution term budget (e.g., α = 8)
is selected, the values in the group have less quantization er-
ror (e.g., [21,6,16,10]). This group-based multi-resolution
approach can be applied to the weight across all layers of the
DNN. Similarly, this multi-resolution paradigm can also apply
to the data by dynamically selecting the data term budget β .

Under this multi-resolution paradigm, during inference run-
time, the term budgets α,β can be selected to accommodate
the current hardware resource constraint (e.g., processing time
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Algorithm 1: Meta Multi-resolution DNN Training
Input: Wl is the full-precision weights at layer l.

XT
l is input data for the teacher sub-model at layer l.

XS
l is input data for the student sub-model at layer l.

K and A are the sets of term budgets and data term budgets.
S is the set of term budget pairs, S = {(α,β )|α ∈ K,β ∈ A}.
b is the bit-width of the multi-resolution model.
I is the number of training iterations (i.e., steps).
L is the total number of DNN layers.
g is the TQ weight group size (static across sub-models).

Output: The teacher model Wtq,T
l .

for i← 1 to I do
for l← 1 to L do

Step 1 Apply b-bit uniform quantization on Wl , XS
l and XT

l
to produce the result quantized model Wq

l and quantized
data Xq,T

l , Xq,S
l .

Step 2 Let αT and βT denote the maximum possible term
budgets for weight and data, respectively. Apply term
quantization on SDR-encoded Wq

l with a budget αT and a
group size g, generating the result model Wtq,T

l .
Step 3 Apply term quantization on Xq,T

l with a budget βT

and a group size 1 to produce term-quantized data Xtq,T
l .

Step 4 Randomly select a pair of term budgets (αS,βS)
from S, apply term quantization on SDR-encoded Wq

l

under a budget αS and a group size g to generate Wtq,T
l .

Step 5 Apply term quantization on Xq,S
l with a budget βS to

generate the term-quantized data Xtq,S
l .

Step 6 Perform the forward pass (e.g., convolution) for
(Wtq,T

l ,Xtq,T
l ) and (Wtq,S

l ,Xtq,S
l ) to produce YT

out , YS
out .

Step 7 Perform additional operations (e.g., non-linear
activation, batch normalization) on YT

out and YS
out to

produce XT
l+1 and XS

l+1.
Step 8 Compute the loss LT ,LS for teacher and student network.
Step 9 Compute the gradient, update Wl and the corresponding

clipping parameters for each layer l ∈ L.

or energy budget) at hand. For instance, when there is less
processing demand, larger term budgets can be applied to the
DNN weights, producing a DNN model with both a better
performance (e.g., classification accuracy) and higher compu-
tation cost, and vice versa. Additionally, since the terms in a
weight group are shared across all resolutions, they only need
to be stored a single time while still supporting all resolutions.
Specifically, the terms for the lower-resolution weight group
can be derived by applying TQ with a corresponding term
budget. We call the resulting DNN model corresponding to a
specific term budget pair (α,β ) a sub-model.

4.2. Meta Multi-resolution Model Training

Training a meta multi-resolution DNN to support multiple term
budgets (i.e., sub-models) during inference requires special
considerations. As we show later in Section 6.3, a simple post-
training quantization approach [29] applied to a DNN trained
without multi-resolution considerations does not achieve good
performance for the low-resolution settings with smaller term
budgets. Therefore, we propose to train the multi-resolution
DNN such that the quantization error introduced by TQ during
inference can be accounted for during training in a similar
manner to other quantization-aware training approaches [21].
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Figure 7: Meta multi-resolution DNN training procedure to sup-
port sub-models with different term budget at inference.

A straightforward training strategy is to jointly train all the
possible sub-models by minimizing the sum of the losses de-
rived from each sub-model. However, this formulation causes
the training runtime and memory to grow super-linearly with
the number of sub-models, making multi-resolution DNNs
with more than a few settings (e.g., 3 sub-models) impractical
to train in this manner. To mitigate these training constraints,
we propose a knowledge distillation mechanism which opti-
mizes only two sub-models per iteration: a higher-resolution
teacher sub-model and a lower-resolution student sub-model.
To speed-up convergence of the multi-resolution model train-
ing, we use a pre-trained full-precision 32-bit floating-point
model, which was trained on same training dataset.

Figure 7 provides an overview of this teacher-student train-
ing procedure. At each iteration, the full-precision model is
first quantized to produce a multi-resolution model (step a).
Then, the set of possible sub-models are generated by apply-
ing the corresponding term budgets on the multi-resolution
model using TQ (step b). The sub-model with the largest term
budget is always used as the teacher network. The student
network is randomly selected from the remaining sub-models
(step c). The training loss is computed using the knowledge
distillation technique [17], which combines loss terms using
both the real labels (LT ) and the soft labels generated by the
teacher network (LS) (step d). The resulting gradients will be
applied to the the full-precision model.

As this training is run over many iterations (e.g., 50000
steps), the student models will receive roughly the same num-
ber of updates via random selection. During each forward
propagation, we apply SDR to reduce the weight and data
terms in the multi-resolution models. Additionally, we adopt
the techniques in [7] to learn the clipping parameters for both
weight and data. See Algorithm 1 for a detailed summary of
this training procedure.

5. System for Multi-resolution DNN Inference
In this section, we describe the design of the mMAC system
(Figure 8) which achieves computation sharing between the
sub-models. To allow simple system design, we choose a
systolic array [25] for the implementation of the computation
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Figure 9: The mMAC can process multiple term budgets in a
multi-resolution DNN with varying the processing time (e.g., a
4-term budget in 4 cycles and a 8-term budget in 8 cycles).

engine, as it allows for a highly regular layout with low routing
complexity. However, our multi-resolution paradigm also
supports other computation engine designs.

5.1. Overview of Multi-resolution Model Deployment

Given a multi-resolution DNN model trained via Algorithm 1,
the terms in each weight group are sorted and stored in mem-
ory. Before the execution, depending on the term budget α ,
the corresponding leading terms for each group are loaded
from memory into each mMAC. During the execution, the
data terms are first quantized under the data term budget β be-
fore entering the mMAC, which can process a fixed amount of
term pairs per cycle. This leads to a processing latency which
is directly proportional to the term-pair budget γ . An example
is given in Figure 9, for a term budget of α = 8 (shown in red),
8 weight terms are loaded from memory to mMAC, which
leads to a processing time of γ = 8. In contrast, a lower term
budget (α = 4 shown in green) would require partial terms to
be loaded, giving a lower processing time (γ = 4).

5.2. Multi-resolution MAC (mMAC) Design

The multi-resolution MAC (mMAC) performs term-pair mul-
tiplication via exponent addition. The hardware design of a
mMAC for a group size g = 4 and term budgets α = 8,β = 2
is shown in Figure 10. The exponents for term pairs are stored
in weight and data exponent queues, with the sign of each term
stored in a separate queue with one bit per term. For exam-
ple, the term −23 would save the exponent 3 in the exponent
queue and a minus (−) in the sign queue. We use the same

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+1
0

mMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+1

0 +
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0 +

 0 2 3 0
Data index queue

 1 1 3 0

Figure 10: Multi-resolution MAC design.
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Figure 11: The term accumulator and incrementer.

weight terms as depicted in Figure 9 for illustration simplicity.
Every cycle, a weight exponent is selected in order from the
weight exponent queue, and a data exponent is selected by
using indexes stored in the data index queue. Then, the adder
computes the sum of the exponents, set the sign, and deliver
the intermediate result to the term accumulator for accumu-
lation operation within one cycle. Therefore, processing a
group with 8 term pairs takes 8 cycles in total. The weight
exponent queue and data index queue are implemented using
linear feedback shift registers, so that the previous output is
fed back into its input for the further usage.

Figure 12 depicts the operation of mMAC under a term bud-
get α = 4 across multiple cycles (T = 0 . . .5). Only the four
leading terms and the corresponding data indexes are loaded
in the weight exponent queue and data index queue. At each
cycle, a pair of weight and data exponents are processed by
the adder, with the resulting signed exponent sent to the term
accumulator. The term accumulator converts the signed expo-
nent to a value and then adds it with the input accumulation.
The term accumulator output will loop back to be used again
in the next cycle while there are remaining term pairs to be
processed before being passed to the neighboring systolic cell.

A naive implementation of the term accumulator would
transform the signed exponent into the corresponding binary
value, and sum the intermediate result with the input accumu-
lation using a parallel adder. Since the input accumulation
can be large (e.g., a 32-bit integer), a parallel adder would be
expensive to implement. Instead, we propose an efficient hard-
ware implementation for the term accumulator by leveraging
the one-hot property of the binary expression for a power-of-
two term, as shown in Figure 11(a).

For instance, we add 4 (0100)2 to the accumulator with
value 9 (1001)2 by right shifting both by 2 bits, adding the
resulting two numbers with the incrementer, and shifting back
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the shifted out 2 bits from the accumulator. Note, we can
use an incrementer because 4 has only one nonzero bit in its
representation because it is a term-pair multiplication product.

To perform the increment operation, instead of using a
parallel adder, which consists of a chain of full adders, an
incrementer can be implemented with an equivalent number of
half adders (Figure 11(b)). This leads to a significant reduction
in hardware resource consumption.

One problem of the above design is that, under SDR, a
term can be negative, meaning that the design must support
both increment and decrement operations. To mitigate this
issue, we adopt two input accumulations to accumulate the
positive terms and negative terms separately. The two input
accumulations use the incrementer in a time-sharing fashion.
A single parallel adder is used to perform subtraction between
the two accumulations at the end of each row of systolic array
to produce the final results.

5.3. Activation Block, SDR Encoder, and Term Quantizer

The activation block takes the outputs from the systolic array
and applies the corresponding nonlinear activation function
(e.g., ReLU). To implement the ReLU function, the activation
block first detects the sign of the input by checking its most
significant bit (MSB). The activation block outputs a zero if
the input is negative; otherwise it simply outputs the original
input. The SDR encoder takes the outputs from the activation
block and produces signed representations with the minimum
number of terms, as described in Section 2.3. The SDR en-
coder can be implemented with a simple finite state machine
(FSM). The term quantizer selects the top β terms for each
data value. Figure 13 demonstrates this process for an input
x = 23 = 24 +23−20. One term of x is delivered to the term
quantizer every cycle, which counts the total number of the
sent terms and sets terms to 0 once the budget β has been
reached (e.g., 2 in this example). The outputs from the term
quantizer will be saved in the data buffer.
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Figure 14: (a) Terms are converted into a packed format for
efficient storage. (b) The encoding table for storage.

5.4. Memory Subsystem

We have developed a compact format for the storage of weight
and data terms in the memory. Figure 14(a) shows an example
for the encoding of a group of 4 terms 24, 24, −23 and 21,
where each term is encoded with 4 bits. The first three bits
represent the exponent of the term, and the forth bit indicates
the sign. Figure 14(b) shows encoding table for 5-bit TQ.

Under this storage scheme, each data value will be repre-
sented by 4β bits. Storing the terms and the data indexes for
each weight group would require 4α bits and αlog2(g) bits,
leading to an average of 4α+α log2(g)

g bits per weight value. For
a group size of g = 16 and budgets of α = 16,β = 2, a weight
and data value both need 8 bits to be stored. Our memory
subsystem consists of a weight and data buffer. The weight
buffer holds the terms of the highest resolution in each weight
group as well as the corresponding data indexes for selecting
the data input. The data buffer holds the data terms for both
the input and output data of the current layer with the format
depicted in Figure 14(a).

6. Multi-resolution Performance Evaluation

In this section, we evaluate the performance (e.g., classifi-
cation accuracy, perplexity, or mean Average Precision) of
DNNs trained under the multi-resolution paradigm proposed
in Section 4 on a diverse range of applications including mul-
tiple CNNs (ResNet-18 [16], ResNet-50 [16] and MobileNet-
V2 [38]) on ImageNet [11], an LSTM [18] on Wikitext-2 [34],
and YOLO-v5 [23] on COCO [30]. We use pre-trained full-
precision models as the initial models for the proposed multi-
resolution paradigm discussed in Section 4.2. These models
come from the PyTorch torchvision for ResNet-18, ResNet-50,
and MobileNet-v2. We train a full-precision LSTM ourselves
using the PyTorch language model example. For YOLO-v5,
we use the pre-trained small model provided by the official
repository (https://github.com/ultralytics/yolov5).

We use these pre-trained models to initialize the training
procedure described in Algorithm 1. For all settings, we use a
weight group size of g= 16. To perform the training efficiently,
we have implemented a custom CUDA kernal to perform TQ
and SDR encoding during the forward pass of training. Full
details of the training hyper parameters can be found in the
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appendix. This section answers the following questions on
multi-resolution performance:
• (Section 6.1) How much performance is lost by enforcing

term sharing instead of training each sub-model separately?
• (Section 6.2) How does the distribution of weight values

change across sub-models as a function of the the weight
term budget?

• (Section 6.3) How much performance is gained via the
multi-resolution training approach (Algorithm 1) as op-
posed to a post-training term quantization approach as
in [27]?

• (Section 6.4) How does UQ (with varying bit-widths) com-
pare to TQ (with varying term budgets) under a bit or term
sharing regime in terms of performance?

6.1. Impact of Term Sharing on Performance

In order to use the multi-resolution paradigm discussed in
Section 4, it is required that the weight values must be shared
across all sub-models. Therefore, it is important to investigate
the impact in performance of enforcing this weight sharing
across the different sub-models. Figure 15 shows the num-
ber of term-pair multiplications and classification accuracy
for ResNet-18 models trained on ImageNet. The dark green
points represent 8 models trained individually using different
TQ settings, such as (α = 10,β = 2). By comparison, the
light green points show the corresponding performance for the
proposed multi-resolution model with 8 sub-models using the
same TQ settings. Generally, we see that the multi-resolution
model is 0.25% to 1.25% worse than each point trained indi-
vidually, with the largest gap being for the most aggressive
setting (α = 8,β = 2).

6.2. Multi-resolution Weight Distributions

As discussed in the previous section, the terms in a multi-
resolution DNN are shared across all sub-models, meaning
that the weight values change depending on the number of
allocated terms for the sub-model. Figure 16 shows a his-
togram of the frequency of weight values for three different
sub-models from a multi-resolution DNN and a 5-bit UQ
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Figure 16: A histogram of the absolute weight values for 3
sub-models of ResNet-18 trained under the multi-resolution
paradigm and an individual model trained under 5-bit UQ.

setting. Interestingly, for the low-resolution sub-model set-
ting of (α = 8,β = 2), the weights are concentrated mostly
at values that can be represented with a single power-of-two
(e.g., 2, 4, and 8) and almost 50% of values are 0. For the
more high-resolution sub-model setting of (α = 20,β = 3),
the distribution of values closely follows the 5-bit UQ model.

In this way, the proposed multi-resolution DNN can be
viewed as interpolating between logarithmic quantization for
the low-resolution sub-model and 5-bit uniform quantiza-
tion for the high-resolution sub-model. By training many
sub-models between these two extreme settings, the multi-
resolution model is able to gradually trade-off computation (in
the number of term operations per sample) for performance
(e.g., classification accuracy) as depicted earlier in Figure 15.

6.3. Comparison to Post-training Quantization

Instead of training a multi-resolution DNN using Algorithm 1,
we could perform post-training quantization [29] on a pre-
trained floating-point model. Generally, post-training quan-
tization leads to poor performance for uniform quantization
with less than 8 bits per weight. However, term quantization,
which was originally posed as a post-training quantization
approach in [27], leads to improved performance compared to
UQ even when only a few terms are used per value.

Figure 17 provides a comparison between the proposed
multi-resolution training with TQ approach and post-training
TQ as in [27] for ResNet-18 and ResNet-50 on ImageNet. For
both ResNet-18 and ResNet-50, we see that multi-resolution
training outperforms post-training quantization for all settings.
Additionally, we see that more aggressive settings lead to
a larger degradation in accuracy, demonstrating that multi-
resolution training is important to achieve a reasonable trade-
off space between performance and number of operations.

6.4. Comparison to Term Sharing Uniform Quantization

In this section, we compare the number of term-pair multipli-
cations required to process one sample at different sub-model
settings across multiple domains (image classification, ob-
ject detection, and language modeling) using either UQ or
TQ under term sharing via a multi-resolution model. The
training procedure for the UQ models is the same as in Al-
gorithm 1, except with UQ substituted for TQ. For the UQ
models, sub-models are obtained by varying the weight and
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LUT FF
pMAC 57 44
bMAC 12 14
mMAC 21 25

Table 1: Resource con-
sumption of FPGA

data bit-width (e.g., from 5-bit to 2-bit values for the CNNs
trained on ImageNet). See the appendix for a complete de-
scription of parameters settings used in the evaluation.
6.4.1. ImageNet Figure 18(left) compares the performance
of our multi-resolution approach under TQ and UQ across
ResNet-18, ResNet-50, and MobileNet-v2 on ImageNet. For
all three models, we observe that the multi-resolution approach
using TQ greatly reduced the number of term multiplications
compared to UQ while also achieving significantly better per-
formance of roughly 5%. Enforcing term sharing across the
UQ settings leads to a significant degradation in model perfor-
mance, as all of the sub-models must share a common scale
factor for quantization. Deriving a common scale factor is dif-
ficult for the 5-bit and 2-bit settings. Additionally, the trade-off
between performance and operations is more graceful under
TQ compared to UQ due to the more fine-grained nature of TQ
as each point varies by two additional nonzero terms instead
of a reduced bit-width.
6.4.2. LSTM Figure 18(middle) compares the performance of
the two approaches on a 2-layer LSTM with 650 hidden units
(i.e., neurons), a word embedding of length 650, and a dropout
rate of 0.5 trained on WikiText-2, following the PyTorch word
language model example. We see that our multi-resolution
approach with TQ outperforms UQ by a wide margin, with
even the most aggressive sub-model setting still achieving a
reasonable perplexity.
6.4.3. COCO Finally, Figure 18(right) provides a comparison
on YOLO-v5 (small) trained on COCO. We find that object
detection requires significantly more precision compared to
image classification to achieve good performance. Due to

γ 16 20 24 28 42 48 54 60
bMAC 0.15× 0.17× 0.22× 0.26× 0.37× 0.44× 0.50× 0.56×
pMAC 0.17× 0.22× 0.27× 0.31× 0.47× 0.53× 0.61× 0.66×
mMAC 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×

Table 2: Comparison on energy efficiency for MAC designs.

this, the UQ settings span from 8-bit to 5-bit representations
for weights and data. By comparison, the sub-models in our
multi-resolution approach span from (α = 22,β = 4) to (α =
38,β = 5). Since TQ only specifies the number of nonzero
terms and not the bit-width, we are able to achieve better
performance by using a large bit-width (8-bit) for all settings
while varying the term budget in each sub-model.

7. Hardware Evaluation

In this section, we evaluate the performance of the mMAC sys-
tem described in Section 5. We have synthesized our mMAC
system using Xilinx VC707 FPGA evaluation board. We
first illustrate the advantage of mMAC design by comparing
it against conventional bit-serial and bit-parallel MAC (Sec-
tion 7.1). Then, we evaluate the hardware performance under
different resolutions in Section 7.2. Finally, we compare our
system against the other FPGA accelerators in Section 7.3.

7.1. Comparing mMAC to Conventional MACs

We evaluate the efficiency of our mMAC design by comparing
it against bit-serial and bit-parallel implementations of a con-
ventional MAC. We evaluate all three designs on the following
computation: yout = ∑

g
i=1 xiwi + yin, where yin, yout , xi and wi

are 16-bit, 16-bit, 5-bit and 5-bit, respectively, and g is the
number of accumulating operations (i.e., group size in TQ).

The left part of Figure 19 shows the design of a bit-parallel
MAC (pMAC), which performs multiplication between xi and
wi and sums the result with yin in one cycle and generates yout
in g cycles. The bit-serial MAC (bMAC), based on [26], is
shown in Figure 19(right). It consists of a bit-serial multiplier
and additional logic elements to negate the multiplier output
and perform accumulation. It requires 16 cycles to process one
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Figure 20: The mMAC system supports a range of designs
with varying energy efficiency and latency under different γ

settings across multiple networks (normalized to γ = 16).

pair of values, for a total of 16×g cycles to generate yout . In
contrast, mMAC takes γ cycles to perform this accumulation
operation, where γ is the term-pair budget for the weight and
data. We set the group size g = 16 for evaluation.

Table 1 depicts the FPGA resource consumption of the
three MAC designs in terms of LookUp Tables (LUTs) and
Flip-flops (FFs). Compared with pMAC, mMAC consumes
2.8× less LUT and 1.8× less FFs, this is due to the fact that
mMAC performs additions on the exponents as opposed to
multiplication for computing the term products. Although the
bMAC achieves a even lower hardware source consumption
than mMAC, it requires a much larger processing latency.

Table 2 shows the evaluation on energy efficiency for all
the three MAC designs on FPGA, where all the results are nor-
malized by the performance of mMAC. We evaluate mMAC
under different term-pair budget γ used in Figure 15. We ob-
serve that the performance of mMAC improves as term-pair
budget reduces, with all settings outperforming both bMAC
and pMAC. A smaller term-pair budget allows for a smaller
amount of term-pair operations required to generate the result.
This reduces the processing time and further improves the en-
ergy efficiency of mMAC. In particular, compared with pMAC
and bMAC, mMAC achieves a 3.1× and 5.6× higher energy
efficiency on average for all the term-pair budget settings.

7.2. FPGA system evaluation

In this section, we evaluate our mMAC system performance
under different resolutions. The mMAC system contains a
128× 128 systolic array. We adopt the corresponding term-
pair budgets used in Figure 18 for evaluation.

Figure 20 illustrates the trend in average processing latency
(i.e., number of cycles to finish one input sample) and energy
efficiency (i.e., number of input samples processed for one
Joule of energy) of the mMAC system under different γ values
(i.e., term-pair budget) across multiple models. We notice that
the processing latency decreases (3.1× on average) and the
energy efficiency grows (3.25× on average), as γ reduces from
60 to 16. This is because a lower term-pair budget leads to a
smaller mMAC processing time for a group of weight and data
values. Additionally, a smaller term-pair budget also reduces
on-chip traffic between the storage and computation engine,
since only the terms in the low-resolution terms need to be

[28] [40] [42] [27] Ours
FPGA Chip VC709 Virtex-7 ZC706 VC707 VC707
Frequency (MHz) 150 100 200 170 150
FF 262k(30%) 348k(40%) 51k(12%) 316k(51%) 409k(66%)
LUT 273k(63%) 236k(55%) 86k(39%) 201k(65%) 275k(91%)
DSP 2144(59%) 3177(88%) 808(90%) 756(27%) 996(36%)
BRAM 1913(65%) 1436(49%) 303(56%) 606(59%) 524(51%)
Latency (ms) 2.56 11.7 5.84 7.21 3.98
Energy eff. (frames/J) 12.93 8.39 40.7 25.22 71.48

Table 3: Comparison of our FPGA implementation of ResNet-
18 to other FPGA-based accelerators on ImageNet.

transferred. Figure 20 demonstrates that our mMAC system
can provide a range of designs with varying energy efficiency
and latency by dynamically adjusting its computational cost
based on the term-pair budget γ .

7.3. Comparison Against Other FPGA Designs

Lastly, we compare our mMAC system with the other FPGA
DNN accelerator designs on ResNet-18. Specifically, we apply
term budgets of (α,β ) = (20,3) and g = 16 for our mMAC
system, which can achieve a top-1 prediction accuracy of
70.02% on ImageNet. The results are shown in Table 3. Our
system achieves the highest energy efficiency. Although the
processing latency of [28] is even lower, it has a much larger
hardware resource cost and lower energy efficiency. On aver-
age, our system outperforms the other designs by 1.7× and
3.28× in terms of the processing latency and energy efficiency.

Our mMAC system achieves superior performance for sev-
eral reasons. Most importantly, the multi-resolution DNN
with TQ significantly reduces the number of term-pair opera-
tions, which further allows the computation engine to achieve
a much tighter processing bound and therefore a lower pro-
cessing latency. For instance, under a group size g = 16 and
term-pair budget γ = 60, the mMAC system achieves a worst
case processing time of only 60 cycles to compute the dot
product for the 16 values in the group. This is in contrast to
the conventional accelerator design, where the computation
latency is always impeded by the slowest computation unit
in the system. Second, the efficient design of mMAC con-
verts the expensive multiplication operations between values
into a series of additions between the term exponents, and
the incrementer in the term accumulator further mitigates the
implementation cost of the expensive parallel adder. Finally,
the compact memory encoding scheme leads to a lighter traffic
between the on-chip buffer and the computation engine.

8. Conclusion

We have shown that via term quantization, a single meta model
can spawn sub-models of varying resolutions with low sys-
tem overheads and performance loss. To this end, we train
the meta model by jointly optimizing multiple sub-models of
different resolutions. During inference, we implement mul-
tiple resolutions by simply adjusting the number of leading
non-zero terms on the learned weights of the meta model. To
minimize memory footprint of the metal model and stream-
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line its training, we share terms across multiple sub-models.
These approaches together lead to a multi-resolution MAC
(mMAC) design that can efficiently implement multiple resolu-
tions.Results of this paper demonstrate that field-configurable
multi-resolution inference is viable.
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