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ABSTRACT
We present a full-stack optimization framework for accelerating in-
ference of CNNs (Convolutional Neural Networks) and validate the
approach with a field-programmable gate array (FPGA) implemen-
tation. By jointly optimizing CNN models, computing architectures,
and hardware implementations, our full-stack approach achieves
unprecedented performance in the trade-off space characterized
by inference latency, energy efficiency, hardware utilization, and
inference accuracy. An FPGA implementation is used as the valida-
tion vehicle for our design, achieving a 2.28ms inference latency for
the ImageNet benchmark. Our implementation shines in that it has
9x higher energy efficiency compared to other implementations
while achieving comparable latency. A highlight of our approach
which contributes to the achieved high energy efficiency is an effi-
cient Selector-Accumulator (SAC) architecture for implementing
CNNs with powers-of-two weights. Compared to an FPGA imple-
mentation for a traditional 8-bit MAC, SAC substantially reduces
required hardware resources (4.85x fewer lookup tables) and power
consumption (2.48x).
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•Computingmethodologies→Neural networks; •Computer
systems organization → Systolic arrays; Neural networks; •
Hardware → Hardware-software codesign.
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Figure 1: An overview of the proposed full-stack optimiza-
tion framework for accelerating inference of sparse and
quantized CNNs. Section 3 details CNN training which in-
cludes sparsity and quantization constraints to match the
proposed computing architecture. Section 4 describes the
process of converting a trained CNN into a packed repre-
sentation for systolic array implementation and how FPGA
instructions are generated for each convolution layer. Sec-
tion 5 outlines the proposed architecture with selector-
accumulator (SAC) based systolic cells which are used to per-
form inference for all convolution layers on the FPGA.

1 INTRODUCTION
Due to the widespread success of Convolutional Neural Networks
(CNNs) across a variety of domains, there have been extraordinary
research and development efforts placed on improving the infer-
ence latency, energy efficiency, and accuracy of these networks.
Generally, these research efforts can be viewed from two distinct
perspectives: (1) machine learning practitioners who focus on re-
ducing the complexity of CNNs through more efficient convolution
operations [45], weight and activation quantization [22], andweight
pruning [13] and (2) hardware architecture experts who design and
build CNN accelerators aiming to minimize power consumption,
memory footprint, and I/O cost [8, 23, 43, 48].

However, approaching the problem from only one of these two
viewpoints can lead to suboptimal solutions. For instance, as dis-
cussed in Section 2.4, many low-precision weight quantization
methods may omit significant cost factors in an end-to-end imple-
mentation such as using full-precision weights and data for the first
layer [1, 50] or using full-precision batch normalization [21]. On the
hardware side, most CNN accelerators are designed to support some
target CNNs (e.g., AlexNet [26] and VGG-16 [39]) at 8-bit or 16-bit
precision for weights and data [7, 12]. Therefore, these accelerators
generally are not directly applicable to many of the recent advances
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in CNN design including efficient CNN structures (using, e.g., sep-
arable filters [16]), weight pruning (using, e.g., Lasso [40]), and
low-precision quantization.

To address this disparity, in this paper we propose a full-stack
optimization framework, where the design of the CNN model is
jointly optimized (co-designed) with the computing architectures
and circuit implementations on which it will run. Figure 1 provides
an overview of the proposed method in three stages, covered in
three sections. Section 3 describes the training stage, which uses a
hardware-aware quantization graph to facilitate training a CNN.
The trained CNN can allow direct implementation of quantized
computations on an FPGA without any additional overhead. Sec-
tion 4 describes the process of generating instructions to perform
inference given both the trained CNN and the systolic array of
some fixed size implemented on the target FPGA. It also covers
how the trained sparse and quantized CNN is coded for efficient
use of FPGA memory. Section 5 depicts the bit-serial systolic array
architecture which includes the use of multiplication-free sparse
systolic cells, based on the Selector-Accumulator (SAC) architecture
for the multiplier-accumulation (MAC) operation.

The novel techniques of the paper are as follows:

• A full-stack optimization framework where the hard-
ware architecture informs the CNN structure in training.

• Selector-accumulator (SAC) which provides efficient
multiplication-free inference for CNNs trained with powers-
of-two weights. We replace traditional 8-bit MAC hardware
with inexpensive SAC facilitated by simple shared register
chains (Section 5.2).

• A systolic array building block for low-precision CNNs
(Section 5.1) which uses shared register chains for two pur-
poses: propagating data into adjacent systolic cells and per-
forming multiplication with powers-of-two weights. Systolic
arrays are used as an example of processor arrays (our reg-
ister chain design may extend to other parallel processing
array architectures).

• A streamlinedCNN structurewhich achieves competitive
performance on ImageNet in the mobile setting using only
1×1 convolution without residual connections (Section 3.1).

• Input reshaping which decreases the spatial resolution of
the input image while increasing the number of channels
(Section 3.3). This significantly increases the systolic array
utilization for the first convolution layer which is a signifi-
cant portion of the total runtime.

Leveraging all these advances into a single system is challeng-
ing and one of the main accomplishments of this work. We have
built an efficient CNN inference engine on an FPGA (Xilinx VC707
evaluation board) and have validated its correctness by checking
the output against our software output. All the timing and power
consumption results reported in this paper are based on the actual
measurements obtained from this FPGA implementation. Our FPGA
design is composed almost entirely of lookup tables (LUTs). We use
DSPs only to implement the final fully connected layer.

We believe our design provides a useful base for future ASIC im-
plementation. Our CNN training code (using PyTorch [35]), python
code which converts a trained sparse and quantized CNN into a
packed representation for the FPGA, and Verilog code for FPGA
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Figure 2: CNN inference for two consecutive layers (layer L
and L + 1) using a single 128×128 systolic array similar to
the implementation in this paper. The systolic array alter-
natively executes load weight and matrix multiply instruc-
tions for all tiles in a layer (six instructions in total for this
example; see Section 4.2).

implementation are available at https://github.com/BradMcDanel/
multiplication-free-dnn.

2 BACKGROUND AND RELATEDWORK
In this section, we first describe CNN inference using systolic arrays
and summarize recent FPGA-based CNN accelerators which we
compare against in Section 6. Then, we review advances in efficient
CNNs which are used as a starting point for our approach.

2.1 Systolic Arrays
A systolic array [27] is a collection of interconnected systolic cells.
Generally, each systolic cell in a systolic array is hard-coded to
perform the same simple arithmetic operation (e.g., a MAC oper-
ation). Additionally, communication (i.e., dataflow) in the systolic
array occurs only between neighboring cells. These properties make
systolic arrays appealing for computational problems which rely
heavily on a single type of arithmetic operation such as MAC in
CNN inference.

Figure 2 depicts how a systolic array implemented on an FPGA
performs CNN inference by reusing the array across the CNN layers.
Note that for systolic array synchronization, items input to and
output from the array are properly skewed, as shown in the figure.
When a layer has more filters than the systolic array can handle,
we partition the layer into vertical tiles across filters, as shown on
the left of the figure, and reuse the systolic array across these tiles.
When a layer has more channels than the systolic array can handle,
we partition the layer into horizontal tiles across channels (these
horizontal tiles are not shown in the figure).

2.2 FPGA Accelerators for CNNs
In recent years, numerous FPGA designs for CNN inference have
been proposed (generally targeting prominent networks such as
LeNet-5 [29], AlexNet [26], and VGG-16 [39]) with the key objec-
tives of low latency and high energy efficiency. A common strategy
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deployed by these designs is to minimize the degree of weight and
data movement, especially from off-chip memory, as they add sig-
nificant overhead in terms of both latency and power consumption.

One approach for minimizing data movement is layer fusion,
where multiple CNN layers are processed at the same time in a
pipelined manner to allow for instant use of intermediate data with-
out external memory accesses [20, 30, 46]. Another approach, used
for 3×3 or larger convolutional filters, is determining the order of
inference computation which minimizes the number of partial sums
that must be stored [33, 49]. Since our CNN architecture (Section 3)
uses only 1×1 filters, convolution is reduced to matrix multiplica-
tion, which can be efficiently implemented using systolic arrays.
Additionally, different computation strategies are often taken for
the first layer [47], as it has only three input channels in the case of
RGB images and final fully connected layer [36], where there are sig-
nificantly more weights than data. In this work, we propose to use
the same systolic array building block for efficient implementations
of all convolution layers in a CNN.

2.3 Efficient CNN Structures
Since VGG-16 [39] was introduced in 2014, there has been a gen-
eral trend towards designing deeper CNNs through the use of
residual connections (ResNets[14]) and concatenative connections
(DenseNet [19]) as deeper networks tend to achieve higher clas-
sification accuracy for benchmark datasets such as ImageNet [6].
However, as pointed out in Table 2 of the original ResNet paper [14],
residual connections appear to add little improvement in classifi-
cation accuracy of a shallower (18 layer) CNN. Based on these
observations, we have chosen to use a shallower CNN (19 layers)
without any residual or concatenative connections, which we out-
line in Section 3.1. In our evaluation (Section 6.5.3) we show that
for this shallower CNN, the exclusion of additional connections has
minimal impact on classification accuracy while significantly sim-
plifying our hardware implementation and improving its efficiency.

Additionally, several alternatives to standard convolution have
been recently proposed to reduce the computation cost. Depthwise
separable convolution [3] dramatically reduces the number weights
and operations by separating a standard convolution layer into two
smaller layers: a depthwise layer that only utilize neighboring pixels
within each input channel and a pointwise layer which operates
across all channels but does not use neighboring pixels within a
channel (i.e., it only uses 1×1 filters). Wu et al. [45] showed that
a channel shift operation can be used to replace the depthwise
layer without a 4significant impact on classification accuracy. As
described in Section 3.1, our proposed CNN use this channel shift
operation immediately preceding a 1×1 convolution layer. Note
that the training paradigm outlined in Section 3 is not specific to
convolution with shift and can also be applied to more conventional
networks (e.g., AlexNet, VGG, and ResNet).

2.4 Weight and Data Quantization
Several methods have been proposed to quantize the CNN weights
after training, using 16-bit [12] and 8-bit [7] fixed-point representa-
tions, without dramatically impacting classification accuracy. More
recently, low-precision quantization methods (i.e., 1-4 bits) such as
binary [4, 17] and ternary quantization [42, 50, 52] methods have

also been studied, which may incur some loss in classification ac-
curacy compared to higher precision approaches. Generally, for
these low-precision methods, training is still performed using full-
precision weights, but the training graph is modified to include
quantization operations which match the fixed-point arithmetic
used at inference. In this paper, log quantization [50] is adopted
for weights, with each quantization point being a power of two.
This allows for significantly more efficient inference, as fixed-point
multiplication is replaced with bit shift operations corresponding
the powers-of-two weight, as discussed in Section 5.

In addition to weight quantization, we may also quantize ac-
tivated data output from each CNN layer [1, 2, 37, 50, 51]. Data
quantization reduces not only the cost of MAC operations but also
the cost of memory access for these intermediate output between
layers in a CNN during inference. However, it has been shown that
low-precision quantization of activation (i.e., 1-4 bits) appears to
lead to a significant degradation in classification accuracy compared
to weight quantization [5, 31]. Due to these considerations, we use
8-bit linear quantization for data in this paper and focus on an
efficient implementation of powers-of-two weight multiplications
with 8-bit data.

Additionally, we note that many of the proposed methods for low
precision weights and data omit details which are important for effi-
cient end-to-end system performance. First, work in this area often
treats the first layer in a special manner by keeping the weights and
data full-precision to mitigate a potential drop in classification accu-
racy [1, 5, 31]. Second, they often explicitly omit quantization con-
siderations of batch normalization and use standard full-precision
computation as performed during training [1, 51]. Since batch nor-
malization is essential to the convergence of low-precision CNNs,
this omission makes it difficult to efficiently implement many low-
precision approaches as floating-point units are required for batch
normalization. In this work, as discussed in Section 3.2, we handle
both of these issues by (1) quantizing the weights and data in all
layers (including the first layer) under a single quantization scheme
and by (2) including batch normalization quantization in the train-
ing graph (depicted in Figure 6) so that it adds zero overhead during
inference.

2.5 Weight Pruning
It is well known in the literature that the majority of weights in a
CNN (up to 90% for large models such as VGG-16) can be set to zero
(pruned) without having a significant impact on the classification
accuracy [13]. The resulting pruned network may have sparsely
distributed weights with an irregular sparsity structure, which is
generally difficult to implement efficiently using conventional hard-
ware such as GPUs. Subsequent methods have proposed structured
pruning techniques which result in models with structured spar-
sity [11, 15, 18, 32, 34, 44]. While these methods allowmore efficient
CPU and GPU implementations, they appear unable to achieve the
same level of reduction in model size that unstructured pruning
can achieve.

Column combining is a pruning method which allows for sparse
CNN layers, but enforces that the remaining sparse weights can be
packed into a denser format when deployed in a systolic array [28].
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Figure 3: A pointwise convolution layer (left) with four chan-
nels per group resulting from pruning for column combin-
ing [28]. After combining columns in the filter matrix (left),
each group of four channels (shown in cream and green) are
reduced into a single column (right). Note that during col-
umn combing, for each group, all entries in each row are
removed (pruned) but one with the largest magnitude.

In our proposed training pipeline, we use column combining in ad-
dition to weight and data quantization as discussed in the previous
section, in order to achieve efficient sparse CNN inference. Figure 3
shows how a sparse pointwise convolution layer with powers-of-
two weights is converted into a denser format by removing all but
the largest nonzero entry in each row across the combined channels
when stored in a systolic array. In this example, column combining
reduces the width of the small layer by factor of 4× from 8 to 2.
In Section 5, we describe bit-serial design for efficient hardware
implementation of this packed format shown on the right side of
Figure 3.

3 FULL-STACK MODEL TRAINING
In this section, we first provide an overview of our streamlined
CNN structure in Section 3.1, targeted for the FPGA implementa-
tion reported in this paper. Then, we outline the various design
choices to improve the utilization and efficiency of the FPGA sys-
tem. Specifically, we employ a quantization-aware training graph,
including quantized batch normalization (Section 3.2) and an input
reshaping operation to improve the utilization of our systolic array
for the first convolution layer (Section 3.3). The methods proposed
in Section 3.2 and Section 3.3 are not specifically designed for the
evaluation network used in the paper (described in Section 3.1) and
can be generally applied to any CNN structure.

3.1 Proposed Streamlined CNN Architecture
Our objective in designing a CNN architecture is to achieve high
classification accuracy using a simplified structure across all con-
volution layers which can be mapped efficiently onto a systolic
array. Figure 4 shows the structure of each convolutional layer
in our network. To achieve similar performance to standard 3×3
convolution while using only pointwise (1×1) convolution, every
layer begins with a channel shift operation as described in [45]. The
output of the shift operation is then applied to a sparse pointwise
convolution layer, followed by batch normalization and rectified
linear unit (ReLU). During training, the weights in the pointwise
convolution layer are pruned with column combining using the
column groups parameter (g) as in [28]. For the earlier convolution
layers in a network which have fewer weights, a column group

Shift

Layer
filters (f), stride (s),
column groups (g)

Batch normalization
ReLU

Pointwise (1x1) Conv
filters=f, stride=s, 
column groups=g 

Column groups controls the 
degree of sparsity in the

pointwise convolution layer
(e.g., g=4 means ≤ 25% of 

weights are nonzero) 

Figure 4: Each layer of the evaluation CNN models in this
paper consists of a shift operation [45], pointwise (1x1) con-
volution, batch normalization and ReLU activation. A layer
is parameterized with a number of filters (f), a stride (s), and
columngroups (g) for column combining in packing a sparse
convolutional layer [28].

size of 2 is used, which reduces the number of nonzero weights by
roughly 50%. For the latter CNN layers, which are larger and have
higher redundancy, a group size of 8 is used (an 87.5% reduction).
Each layer is progressively pruned over the course of training, such
that after training they will reach their target sparsity set by the
column groups for the layer.

Figure 5 shows the evaluation models for the proposed stream-
lined CNN structure for the CIFAR-10 [25] and ImageNet [6] datasets.
As discussed in Section 2.3, we have chosen to keep the network
relatively shallow (19 layers) and without any residual or concate-
native connections. In Section 6, we show that this streamlined
structure can achieve competitive Top-1 ImageNet classification
accuracy with low latency and high energy efficiency. We evalu-
ate ImageNet under three network settings: ImageNet-Small/224,
ImageNet-Small/56, and ImageNet-Large/56, where 224 and 56 refer
to the width and height of the input image after the prepossessing
stage. The small models have 1.5M weights and the large model has
8.5M weights after training. These evaluation model were chosen
to evaluate the importance of model size and the spatial input size
on classification accuracy, latency, and throughput. Additionally, as
described in Section 3.3, for the settings with (56×56) input size, we
use an reshaping operation to increase the number of input chan-
nels from 3 (for RGB images) to 48 for increased systolic array
utilization.

3.2 Quantization-aware Training
In order to achieve high classification accuracy using powers-of-
two weights, we add quantization operations to the CNN training
graph to match the fixed-point weights and data used at inference.
Figure 6 shows the training and inference graphs for a single layer
in the CNN shown in Figure 4. As discussed in Section 2.4, this
approach of injecting quantization into the training graph is known
in the literature and has mainly been used to train binary and
ternary networks [4, 51]. In our training graph, we use log quanti-
zation for the weights, which quantizes an underlying full-precision
weight (shown in blue) to the nearest power of two. During train-
ing, backpropagation uses full-precision gradients to update the
full-precision weights in each layer as in [4].

Additionally, we perform quantization on the batch normaliza-
tion operations which follow each convolutional layer. Generally,
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for higher precision weights (e.g., 8-bit weights), these batch nor-
malization parameters can be folded directly into the weights and
bias terms of the preceding convolution layer after training, so that
they have no additional overhead [24]. However, for lower precision
weights (such as binary or powers-of-two weights), this folding pro-
cess introduces significant quantization error, leading to a notable
drop in classification accuracy. For this reason, prior works using
low-precision weights employ full-precision batch normalization,
incurring the corresponding full-precision computation cost. For
our proposed bit-serial architecture, these full-precision batch nor-
malization operations would introduce significant overhead and
break our objective of multiplication-free inference. Therefore, as
shown in Figure 6, we include quantization of the batch normaliza-
tion parameters in our training graph. Applying log quantization

on the batch normalization scale parameters allows them to be
folded into the log quantized weights without introducing any
quantization error.

Batch normalization is defined as

xbn = γ (
x − µ

σ
) + β (1)

where µ and σ are the mean and standard deviation of each mini
batch during training and average running statistics during infer-
ence. γ and β are learnable parameters which are introduced to
improve the representation power of the network. When followed
by ReLU, as is the case in our CNN, the effects of the learnable scale
parameter γ can be captured in the following convolution layer and
can therefore be omitted by setting γ as 1 [10]. We then factor µ, σ ,
and β into a scale and bias term as follows

xbn =
1
σ︸︷︷︸

scale

x + β −
µ

σ︸︷︷︸
bias

(2)

After applying quantized batch normalization to the output from
the preceding convolution layer, a non-linear activation function
(ReLU) is performed, which sets all negative values to 0. Addition-
ally, it applies 8-bit linear quantization on the data so that it matches
the fixed-point computation at inference. The inference graph of
Figure 6 shows how computation is performed on the FPGA during
inference. The log quantized batch normalization scale factor is
folded into the log quantized weights in the preceding convolution
layer. Only channel shift and fixed-point addition operations are
performed during inference.

3.3 Input Reshaping to Improve Utilization
For CNNs trained on ImageNet, the first convolution layer repre-
sents 10-15% of the total inference computation performed due to
the large spatial size of the input image (3×224×224). However, as
recently discussed by Xilinx [47], the computation in this layer does
not map well onto a systolic array, because the input image has only
three input channels, meaning that the majority of the array’s input
bandwidth may not be utilized. To address this imbalance, Xilinx
proposes to use two systolic arrays, one systolic array specifically
designated to the first layer and the other systolic array used for
the remaining convolution layers in the CNN.

In this paper, rather than using a different systolic array for the
input layer, we reshape the input image to the CNN to increase the
utilization of our single systolic array for the first convolutional
layer. Figure 7 shows the input reshaping operation for an RGB
image with 3 channels and 224×224 pixels per channel. Each 2×2
block of pixels is divided into four groups (denoted 1, 2, 3, and 4)
with 1 pixel per group. The pixels in the same group across all 2×2
blocks are then placed into a new set of RGB channels (4 groups,
each with RGB channels, leading to 12 channels total). Each of these
channels has 112×112 pixels, which is one quarter of the original
input image. In Section 6, we evaluate the ImageNet-Small/56 and
ImageNet-Large/56 networks with an even more aggressive reshap-
ing operation, where we use 16 groups to convert the 3×224×224
input image into a 48×56×56 input for the CNN.

453



ICS ’19, June 26–28, 2019, Phoenix, AZ, USA B. McDanel, S. Zhang, H. T. Kung, X. Dong

224

224

1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

3 Channel (RBG) 
Input Image

112

112

4 4
4 43 3

3 32 2
2 21 1

1 1

4*3 Channel 
Reshaped Input

Input
Reshaping
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prove utilization of the systolic array in processing the first
layer.

8 Filters

8 Channels

0 0 2-2 0 20 0 0 0

2-3 0 0 0 0 20 0 0

0 0 0 2-1 0 2-4 0 0

0 20 0 0 0 0 0 2-5

2-2 0 0 0 2-2 0 0 0

0 0 0 2-4 0 0 20 0

20 0 0 0 0 0 0 2-1

0 2-1 0 0 0 0 0

-

-

-

-

Convert to
Packed Format 01010101 00000111

00010100 00110111

01100110 00110011

00110111 01110010

00010101 00000101

01110011 01000111

00010111 01110110

00100110 00000000

Packed Format

001 0 0110

Sign
(1 bit)

Weight
(4 bits)

Index
(3 bits)

Pointwise Layer

0000 = 0 
0001 = 2-6

0010 = 2-5

0011 = 2-4

weight values
0100 = 2-3

0101 = 2-2

0110 = 2-1

0111 = 20

-

0

Figure 8: A sparse pointwise layer with powers-of-two
weights (left) is converted into a packed representation for
efficient storage on an FPGA (right), where each group of
combined channels (4 in this example) produces 1 8-bit en-
coding per filter (row).

4 CONFIGURATION AND INSTRUCTIONS
In this section, we show how our trained CNN described in Section 3
is coded for efficient use on an FPGA (Section 4.1). We then explain
how the weights in each layer are divided into tiles which fit in a
given systolic array and the corresponding instructions for each
tile which run on the FPGA (Section 4.2).

4.1 Coding Sparse CNN Layers for FPGA
After training is complete, each convolution layer will have reached
a target sparsity set by the column group parameter for the layer
as described in Section 3.1. The left side of Figure 8 illustrates the
weights of a pointwise convolution layer after training with 8 filters,
8 channels, and column groups of size 4. For this layer, each group
of 4 channels will be combined into a single column in the systolic
array on the FPGA, as there is at most one nonzero entry per filter
(row) in each group. The remaining nonzero weights are powers of
two due to the weight quantization scheme discussed in Section 3.2.

To illustrate the coding procedure, we have outlined 4 weights
in red in the pointwise layer shown in Figure 8 which will be
converted into an 8-bit representation in the packed format. The
second element in this group is the nonzero weight −2−1. The first
3 bits in the encoding store the index of the nonzero weight which
is 1 (001) corresponding to the second element in the group. Note
that for larger layers, we combine up to 8 channels, requiring a 3-bit
index. The remaining 5 bits are composed of a sign bit and 4 bits
to indicate the power-of-two weight, which is 00110 for −2−1. As
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Figure 9: The FPGA instruction layout for a 128×64 systolic
array on an FPGA.

depicted in Figure 8, the representable powers-of-two weights are
ordered from smallest to largest (e.g., 2−6 is 0001 and 20 is 0111),
with 0000 being used to represent 0. In summary, to configure each
systolic cell, only 8 bits are required.

4.2 Instructions for FPGA
CNN inference is composed of a series of matrix-matrix multi-
plications, one per convolution layer, between the data which is
input to a layer and the learned weights of a layer. When using a
single systolic array to perform the matrix multiplications for all
layers, generated instructions will carry out a relatively straight-
forward process of alternatively loading weights into the systolic
array and performing matrix multiplication between the data and
loaded weights, in sequential order of the CNN layers. However,
when a weight matrix is larger than the fixed size of the systolic
array, it must be partitioned into smaller tiles, where each tile can
fit into the systolic array. Then, a pair of weight loading and matrix
multiplication instructions are scheduled for each tile. In this paper,
we use column combining to dramatically reduce the number of
columns for inference (e.g., from 512 channels to 64 columns in the
systolic array via 8-way combining) decreasing the total number of
tiles.

Figure 2 shows how inference is performed across two layers
(layer L and layer L + 1) using a single systolic array. First, a load
weights instruction is used to load the 128 filters by 128 channels
weight matrix for layer L. Then, matrix multiplication is performed
between the loaded weights and the previous layer output (layer L
- 1) by passing the data into the systolic array. This matrix multipli-
cation generates the layer L output which will be used for layer L
+ 1. Since the layer L + 1 weight matrix of 256×128 is larger than
the systolic array of 128×128, it is partitioned into two tiles. The
first tile in layer L + 1 is then loaded into the systolic array and is
multiplied with the layer L output, which generates half the output
for layer L + 1. The second tile in layer L + 1 is then processed in
the same manner as the first tile. A total of six instructions are used
in total, one pair of weight load and matrix multiply instructions
for layer L and two pairs of instructions for layer L + 1.

Figure 9 shows the FPGA instruction layout for the systolic array
architecture described in Section 5. A load weight instruction is
indicated when the first bit is set, with the systolic array width and
height fields controlling the size of the tile being loaded into the
array. A matrix multiply instruction is indicated when the second
bit is set. The height of the data matrix to be multiplied with the
loadedweights is set by the input width and height fields (e.g., 56×56
for the first layer).
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Figure 10: System design as implemented on an FPGA.

5 FPGA DESIGN
In this section, we provide a detailed description of our FPGA design
for sparse CNN inference with powers-of-two weights.

5.1 System Description
Figure 10 shows an overview of the CNN inference system as imple-
mented on an FPGA. The parameter buffer stores the filter weights,
biases, and shift directions for the channel shift operation [45].
During a load weight instruction, filter weights are loaded into the
systolic array (Section 5.2) and filter bias and channel shift direc-
tions are loaded into the bias and the channel shifters, respectively.
During a matrix multiplication instruction, input data is loaded
from the data buffer into the channel shifters, which perform the
shift operations before sending the data to the systolic array in
a bit-serial fashion [28]. Each column in the systolic array takes
input data from multiple input channels to support column com-
bining shown in Figure 3. Each Selector-Accumulator (SAC) cell
(Figure 11) within a column of the systolic array takes in the multi-
ple input channels at different power of two shift offsets to select
both the channel index and powers-of-two weight index for the
cell corresponding to the packed format in Figure 8.

The output from each row of the systolic array is passed to the
ReLU & Quantization block (Section 5.4) before storing the results
back to the data buffer. Output data stored in the data buffer for
the previous layer is the input data to the next layer. The output
accumulator (Section 5.5) is used only in the final (fully connected)
layer to reduce the feature map for each class to a single number
used for prediction. The parameters for the next weight tile are
loaded the off-chip DRAM (not shown in Figure 10) to the parameter
buffer as matrix multiplication is performed on the systolic array
for the current tile. During inference, all intermediate results are
stored in on-chip RAM in the data buffer.

5.2 Selector-Accumulator (SAC) for
Multiplication-free Systolic Array Design

In this section, we describe our Selector-Accumulator (SAC) design
for a multiplication-free systolic array for sparse matrix multipli-
cation. We choose a bit-serial design for efficient multiplexing of
multiple data streams into a single column of the array to support
column combining [28]. In the layout of the multiplication-free
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A B
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weight 
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Figure 11: Bit-serial Selector-Accumulator (SAC).

Table 1: Comparison of FPGA resources and power for a
64×64 systolic array implemented with MAC and SAC.

64×64 MAC 64×64 SAC MAC / SAC
LUT 212388 43776 4.85×
FF 192293 54330 3.54×
Power 4.21W 1.7W 2.48×

systolic array (shown in Figure 10), each column in the array takes
up to eight input channels (to support column combining) into
the register chain for the column in a bit-serial fashion. Each cy-
cle, input data is shifted up to the next register in the chain. This
register chain serves the standard purpose in a systolic array of
propagating data through the cells in the column. However, when
using powers-of-two weights, it can serve an additional purpose of
powers-of-two weight multiplication, as each increasing position
in the register chain corresponds to the input data being multiplied
by an increasing power of two. In our design, we utilize this obser-
vation of the dual purpose nature of the register chain when using
powers-of-two weights to design a more efficient systolic cell.

Figure 11a shows the selector-accumulator (SAC) cells which
takes the input data from multiple points on the register chain and
selects the point corresponding to the powers-of-two weight stored
in cell using a multiplexer. Additionally, it uses a channel index,
also stored in the cell, to determine the position of the weight in the
original sparse filter matrix (see Figure 8 for details on the indexing
scheme). The selected element is then passed into the bit-serial
accumulator shown in Figure 11b. The blue logic elements in the
accumulator negate the product Y based on the sign of the powers-
of-two weight and add the result to the bit-serial accumulator (pink
full-adder) before passing the result to the SAC to the right.

Compared with a 8-bit multiplier-accumulator (MAC) which
requires 8 1-bit full adders for multiplication, the SAC requires only
a multiplexer to select an offset corresponding to a powers-of-two
weight. Using Xilinx Vivado design suite, we observe that compared
to a traditional 8-bit MAC, SAC substantially reduces required LUTs
(4.85×), FFs (3.54×), and power consumption (2.48×), as shown in
Table 1. As we discuss in Section 6.2, this dramatically reduces
the hardware cost of each systolic cell and allows for substantially
larger systolic array to be implemented on the FPGA than with
standard 8-bit MAC cells.

Figure 12 shows how a register chain is used in generating a
shifted version of the input data 10010 (red) with the shift amount
corresponding to the powers-of-two weight associated with the cell
over time steps (T = 0, 1, 2, . . . ). As depicted in Figure 12 (a), (b) and
(c), suppose that the SAC requires a shifted version of the original
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Figure 12: An example of sending a shifted version of input
stream (corresponding to a multiplication with a powers-of-
two weight) to a SAC cell in a bit-serial fashion. In this ex-
ample, the weight is 22.

input with two pending zeros in the beginning (filter weight is four).
Then, the Accumulator (Acc) will grab the input data stream at the
second register in the register chain, so the first two bits sent to the
Acc are zeros (black). After 4 additional cycles, the Acc receives an
input of 1001000, which is four times of the original input 10010.

Figure 13 shows how the register chain can be shared across two
consecutive SAC cells in one column of systolic array. Suppose each
of two SAC cells may require any one of the three shifted versions
of the original input (corresponding to three possible powers-of-
two weights). Then, this leads to use of two windows with span of
three on the register chain (shown in green and blue in Figure 13).
The red lines in the figures show the positions where the SAC cells
grab the shifted versions of the original input from the register
chain. Thus, the register chain is used for two purposes: (1) shifts
the input data upwards to all the SAC cells in the same column
and (2) generates the shifted versions of the input data for the
powers-of-two multiplication.

5.3 Energy-efficient SAC with Zero-Skipping
Each SAC can be turned off to save power when either the weight
or the input to the SAC is zero, which we call zero-skipping. The
structure of a SAC with and without the zero-skipping mechanism
are shown in Figure 14. For the SAC with zero-skipping, the zero
signal is set when either the input or weight is 0 and is used as
the enable signal for the gated clock. When the zero signal is set
due to the current input being 0, the accumulation Yi bypasses
the SAC and is forwarded directly to the next SAC on the row in
the systolic array. Note that due to ReLU, approximately half of
the data elements are zero, meaning that the SAC will be disabled
roughly half of the time. When the weight for the SAC is 0, then
the SAC will be disabled for the entire matrix multiplication. In
Section 6.3, we show that this zero-skipping mechanism reduces
power by roughly 30%.

5.4 Design of ReLU and Quantization Block
As mentioned in Section 2.4, we use an 8-bit fixed-point represen-
tation for the input data to each layer. Therefore, the quantization
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Figure 13: Register chain with per-cell window for powers-
of-two weights for two adjacent cells on a column of the sys-
tolic array. The red lines show the positionwhere the shifted
versions of the original input are grabbed from the register
chain.
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Figure 14: SAC without zero-skipping (a) and with zero-
skipping (b).

process must convert the higher precision (32-bit) accumulator out-
put from the systolic array back into an 8-bit range to be used as
input to the next layer. In this paper, since the fixed-point scale
factor is shared across all layers, this quantization step simplifies to
extracting an 8-bit range from the 32-bit accumulator. This quan-
tization step can be fused with the ReLU activation function, by
setting negative accumulator outputs to 0.

Figure 15 shows the architecture of the ReLU & Quantization
block. A register array is used to collect the 32-bit output from
the systolic array. The 32-bit result is shifted by the smallest repre-
sentable powers-of-two weight (e.g., 2−6 as shown in Figure 8) and
passed to the comparator. The comparator generates the indicator
bit for the multiplexer, which clips the result between (0, 255) before
storing it back to the buffer.

5.5 Design of Output Accumulator
Given the output channels produced by the final convolutional
layer, average pooling is used to reduce the spatial components of
each channel to a single averaged value. For our single systolic array
implementation, we fold this pooling operation into the weights

of fully connected layer. Let xki and x̄k =
∑R
i=1 x

k
i

R denote the i-th
element of the input map k and the average of the input channel k ,
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Figure 15: Design of ReLU and Quantization blocks.

where R is total number of elements in each channel. Denote ®x =
{x̄1, x̄2, ..., x̄M } as the vector of channel averages, whereM is the
total number of input channels. We have the following derivation
for the output ®y of the fully connected layer:

®y =W ®x =W

∑R
i=1 ®xi

R
=

R∑
i=1

W

R
®xi (3)

where ®xi = {x1
i ,x

2
i , ...,x

M
i } and W is the weight matrix of the

fully connected layer. From equation 3, we notice that WR ®xi can be
computed by carrying out the matrix multiplication between W

R
and X = {xki } with the systolic array, and ®y can be computed by
summing up all the W

R ®xi .
The output accumulator is used to calculate the sum of W

R ®xi .
The 32-bit output stream from a row in the systolic array enters the
output accumulator in a bit-serial fashion. This stream is stalled
in a register array until the final bit arrives. The resulting 32-bit
output is added to the next 32-bit output stream. We use DSPs on
the FPGA to carry out these 32-bit additions.

6 EVALUATION
In this section, we first briefly reiterate the key contributions of our
proposed approach from the perspectives of both the CNN training
and hardware and tie each contribution to the corresponding evalua-
tion section (Section 6.1). Then, we evaluate the performance of our
FPGA implementation against state-of-the-art FPGA accelerators
on the ImageNet dataset (Section 6.2). Next, we measure the impact
of zero skipping on energy efficiency (Section 6.3) for different
sized systolic arrays and the impact of folding batch normalization
(Section 6.4). Finally, in Section 6.5, we analyze the impact of our
streamlined CNN structure and training procedure presented in Sec-
tion 3 on classification accuracy including input reshaping, using
powers-of-two weights, and the omission of residual connections
from the CNN structure mentioned in Section 3.1.

We focus on two primary performance metrics: (1) latency from
image input to classification output, and (2) energy efficiency, which
is the number of images the inference engine can process per joule.
Note that the latter is also the number of images/sec (i.e., through-
put) per watt. For high-throughput inference applications we may
use multiple inference engines in parallel. If these individual en-
gines each offer low latency and high-energy efficient inference,
then the aggregate system will delivery high-throughput inferences
per watt while meeting low inference latency requirements.

6.1 Recap of Full-stack Optimization
Full-stack optimization via training has enabled the following de-
sign advances which lead to our efficient FPGA implementation
presented in Section 5.

• Using powers of two for weights and the batch normalization
scale parameters, outlined in Section 2.4, for all convolution
layers in the CNN. This allows for a simplified design, where
a single sparse multiplication-free systolic array is used for
all CNN layers. In Section 6.5.2, we discuss the impact of the
proposed quantization scheme on classification accuracy.

• Zero-skipping of the quantized data (Section 5.3). In Sec-
tion 6.3, we show that zero-skipping reduces the power con-
sumption during matrix multiplication by roughly 30%.

• Packing sparse CNNs using column combining [28] for ef-
ficient storage and use on FPGAs, which we describe in
Section 4.1. Our ImageNet-Small/56 evaluation model has
only 1.5M powers-of-two weights, which is 40× smaller than
AlexNet and 92× smaller than VGG-16 (the two CNNs used
by other FPGA designs).

• Using channel shifts [45] to replace 3×3 convolutions with
1×1 convolutions. As with column combining, this reduces
the number of model parameters. Additionally, it streamlines
the design of the systolic array system, as 1×1 reduces to a
smaller matrix multiplication, as opposed to 3×3 convolu-
tional filters.

• Input reshaping (Section 3.3) to increase the bit-serial systolic
array utilization and dramatically reduce the latency for
the first convolution layer. In Section 6.5.1, we show that
input reshaping alleviates some of the accuracy loss when
using a smaller spatial input size of 48×56×56 instead of the
conventional 3×224×224.

6.2 Comparing to Prior FPGA Accelerators
We compare our 170 MHz FPGA design to several state-of-the-
art FPGA accelerators on the ImageNet dataset in terms of top-1
classification accuracy, latency for a single input image, and energy
efficiency when no batch processing is performed (i.e., batch size
of 1). By choosing these metrics, we focus on real-time scenarios
where input samples must be processed immediately to meet a hard
time constraint. Our evaluation model is the ImageNet-Small/56
network shown in Figure 5 with input reshaped to 48×56×56. Our
FPGA can fit a systolic array with 128 rows by 64 columns. Each
of the columns can span up to 8 channels in convolution weight
matrix, i.e., when the column group parameter is set to 8, for a total
of 512 channels.

Table 2 provides a comparison of our FPGA implementation
with the other FPGA-based CNN accelerators. Our design achieves
a per-image latency of 2.28 ms, which is among the lowest across
all the designs. In addition, compared with some of the most recent
works [41, 49], our design outperforms them by 5.64× and 3.26×,
respectively, in term of energy efficiency. Additionally, compared
to an implementation which achieves comparable low latency [30],
our implementation has 9.29x higher energy efficiency.

Our design achieves the highest energy efficiency among all
these designs for several reasons. First, we use a highly efficient
CNN structure (Section 3.1) with only 1.5M weights (compared
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Table 2: Comparison with other FPGA-based CNN accelerators.

[49] [36] [46] [33] [30] [38] [41] Ours
Xilinx FPGA Chip VC706 ZC706 ZC706 Arria-10 VC709 Virtex-7 ZC706 VC707
FF 51K(12%) 127k(29%) 96k(22%) - 262k(30%) 348k(40%) 51k(12%) 201K(33%)
LUT 86k(39%) 182k(83%) 148k(68%) 161k(38%) 273k(63%) 236k(55%) 86k(39%) 239K(78%)
DSP 808(90%) 780(89%) 725(80%) 1518(100%) 2144(59%) 3177(88%) 808(90%) 112(4%)
BRAM 303(56%) 486(86%) 901(82%) 1900(70%) 1913(65%) 1436(49%) 303(56%) 834(81%)
Accuracy (Top-1) 53.30% 64.64% N/A N/A N/A 55.70% 52.60% 50.84%
Frequency (MHz) 200 150 100 150 150 100 200 170
Latency (ms) 5.88 224 17.3 47.97 2.56 11.7 5.84 2.28
Efficiency (img./S/W) 23.6 0.46 6.13 0.98 12.93 8.39 40.7 120.7

Table 3: Power consumption comparison of zero-skipping.

Without Skipping With Skipping
32×64 1.0W 0.7W
64×64 1.7W 1.3W
128×64 3.0W 2.2W

to 60M for AlexNet and 136M weights for VGG-16 [33, 36]). Our
model in Table 2 is significantly smaller and all weights (including
weights in batch normalization layers) are quantized. Our accuracy
is 50.84% (about 2% worse than nearest competitive designs [41] in
terms of energy efficiency). However, our implementation has at
least 3x higher energy efficiency. Second, our proposed powers-of-
two quantization (Section 2.4) enables the use of a multiplication-
free systolic array (Section 5.1), where each cell contains only a
selector and two full adders (see Figure 11) which are more efficient
compared with [33] and have simpler structure compared with [38].
This allows for a large systolic array (128×64) to fit on the FPGA,
thereby reducing the number of tiles required to perform inference
for each sample. Moreover, by using column combining we can
pack sparse CNN layers for efficient systolic array implementation
with high hardware utilization [28]. Additionally, DSPs are used
in the Output Accumulator (Section 5.5) only for a single fully
connected layer and are turned off for the rest of the layers. Finally,
the zero-skipping mechanism, which we evaluate in more detail in
Section 6.3, further saves power by dynamically turning off systolic
cells when the data entering a cell is zero.

6.3 Power Reduction by Zero Skipping
In order to evaluate the power reduction due to zero skipping,
we measure the power consumption of the FPGA during matrix
multiplication under two settings. The “Without Skipping” setting
uses inputs which are all nonzero, meaning that every cell will be
active during matrix multiplication. The “With Skipping” setting
uses inputs which are half zero, in order to approximate the output
of ReLU, which sets roughly half of the elements to zero [9].

Table 3 shows the amount of power consumption for inference
for the “Without Skipping” and “With Skipping” settings for three
systolic arrays of increasing sizes. For all three systolic array sizes,
we observe that “With Skipping” reduces the power consumption
of matrix multiplication by roughly 30%.

6.4 Power Reduction by Folding Batch
Normalization

We further evaluate the savings on hardware and power by folding
batch normalization parameters into filter weights. For comparison,
we implement a batch normalization block on the FPGA, which
performs 8-bits fixed-point MAC operations on the outputs of 128×
64 systolic array. We then measure the additional hardware and
power consumed by the batch normalization block. Introducing
the additional block for batch normalization not only consumes
additional LUTs and FFs (12653 and 9377 respectively), but also
increases the power consumption by 0.6W.

6.5 Impact of Full-stack Training on Accuracy
We now evaluate the impact of the modifications to both the CNN
structure and training procedure as proposed in Section 3 on classi-
fication accuracy.

6.5.1 Impact of Input Reshaping. In order to determine the effec-
tiveness of the input reshaping operation described in Section 3.3,
we compare models using the same spatial input size with and with-
out reshaping (e.g., 3×56×56 versus 48×56×56) and models with
different spatial input size (e.g., 3×224×224 versus 48×56×56). Ad-
ditionally, we train a larger ImageNet model (ImageNet-Large/56)
using input reshaping to see the best accuracy that our proposed
approach can achieve when used with a small spatial input size.

Table 4 shows the classification accuracy for the four evaluated
network settings. First, we observe that the ImageNet-Small/56
with reshaping is able to achieve similar classification accuracy to
the ImageNet-Small/224 without reshaping, even with a 16× fewer
pixels in each channel. This shows that input reshaping allows for
input images with additional channels to negate some of the loss
in accuracy due to the smaller spatial input size. Additionally, for
the two ImageNet-Small/56 models (with and without reshaping),
we see that input reshaping provides a substantial improvement of
around 4% accuracy. This is especially interesting considering these
two networks have identical structures except for the initial layer
(48 channels with input reshaping versus 3 channels without reshap-
ing). Finally, the ImageNet-Large/56 model achieves an impressive
67.57% which is only 2% behind full-precision MobileNet [16] using
224×224 input. This shows that the proposed CNN structure and
powers-of-two quantization method can achieve high classification
accuracy with reshaped input when using a larger CNN.
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Table 4: Evaluating impact of input reshaping.

Model Input Reshaping Accuracy (%)
ImageNet-Small/224 No 52.32
ImageNet-Small/56 No 46.92
ImageNet-Small/56 Yes 50.84
ImageNet-Large/56 Yes 67.57

Table 5: Comparing full-precision and powers-of-two
weights for the CIFAR-10 and ImageNet-Small/56 models.

CIFAR-10 ImageNet-Small/56
Full-Precision 95.28 57.16
Powers-of-Two 92.80 50.84

6.5.2 Impact of Powers-of-TwoWeightQuantization. While powers-
of-two weight quantization allow for an exceedingly efficient im-
plementation, they introduce some loss in classification accuracy
when compared against a full-precision version of the same net-
work. Additionally, if these schemes are only evaluated on easier
datasets (such as CIFAR-10), the reduction in accuracy can be un-
derstated when transition to harder datasets (such as ImageNet).
Table 5 shows the classification accuracy for the CIFAR-10 and
ImageNet-Small/56 models using full-precision and powers-of-two
weights. We see that while the gap between the CIFAR-10 models
is only around 2.5%, the gap for ImageNet is closer to 6%. However,
as we demonstrate in Section 6.5.1, this reduction in classification
accuracy can often be alleviated by increasing the model size.

6.5.3 Impact of Removing Residual Connections. Figure 16 shows
the impact of residual connections by evaluating the CIFAR-10
network structure with and without residual connections. In or-
der to ensure that there is not an unseen interaction between the
powers-of-two quantization and residual connections, we compare
the impact of residual connections on networks with and without
quantization. We see that, regardless of quantization, networks
trained without residual connections achieve similar performance
to the networks trained with residual connections. This shows that
residual connections have minor impact on classification accuracy
for the 19 layer networks as shown by He et al. in the original
ResNet paper [14].

7 CONCLUSION
In this paper, we propose using full-stack optimizations for accu-
rate, low-latency and high energy-efficiency CNN inference. We
demonstrate that designs ranging from CNN model training at a
high level, to those of computing structures and FPGA implemen-
tation at a low level can all be optimized simultaneously to ensure
they fit one another, thereby achieving high system performance.
While cross-layer optimization (co-design) is a known concept in
the literature, the system reported in this paper is one of the most
comprehensive realizations based on full-stack optimization for the
design of deep learning implementations on a chip.

We describe implementation details of various optimization tech-
niques, including (1) channel shifts instead of computationally more
expensive 3×3 convolutions, (2) packing sparse CNNs of irregular
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Figure 16: Classification accuracy over 150 epochs CIFAR-
10 models trained with/without residual connections and
with/without powers of two quantization.

sparsity structure for efficient implementations on regular proces-
sor arrays, (3) quantizing data activations for power-saving with
zero-skipping and efficient storage of intermediate data between
layers, and (4) use of powers-of-two weights and batch normaliza-
tion for efficient computation.

Our Selector-Accumulator (SAC) design resulting from full-stack
optimization with powers-of-two weights represents an extremely
efficient way of implementing MAC by selecting from a shift regis-
ter rather than performing arithmetic operations. (It seems difficult
to have a more efficient MAC design, short of analog implementa-
tions!) Given that MAC is the basic operation in the dot-product
computation for matching data against filters, we believe our SAC
design is significant.
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