
Embedded Binarized Neural Networks

Bradley McDanel
Harvard University

mcdanel@fas.harvard.edu

Surat Teerapittayanon
Harvard University

steerapi@seas.harvard.edu

H.T. Kung
Harvard University
kung@harvard.edu

Abstract
We study embedded Binarized Neural Networks (eBNNs)

with the aim of allowing current binarized neural networks
(BNNs) in the literature to perform feedforward inference
efficiently on small embedded devices. We focus on mini-
mizing the required memory footprint, given that these de-
vices often have memory as small as tens of kilobytes (KB).
Beyond minimizing the memory required to store weights,
as in a BNN, we show that it is essential to minimize the
memory used for temporaries which hold intermediate re-
sults between layers in feedforward inference. To accom-
plish this, eBNN reorders the computation of inference while
preserving the original BNN structure, and uses just a single
floating-point temporary for the entire neural network. All
intermediate results from a layer are stored as binary values,
as opposed to floating-points used in current BNN imple-
mentations, leading to a 32x reduction in required tempo-
rary space. We provide empirical evidence that our proposed
eBNN approach allows efficient inference (10s of ms) on de-
vices with severely limited memory (10s of KB). For exam-
ple, eBNN achieves 95% accuracy on the MNIST dataset
running on an Intel Curie with only 15 KB of usable mem-
ory with an inference runtime of under 50 ms per sample. To
ease the development of applications in embedded contexts,
we make our source code available that allows users to train
and discover eBNN models for a learning task at hand, which
fit within the memory constraint of the target device.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-

niques—Software libraries; I.2.6 [Artificial Intelligence]:
Learning—Neural networks

General Terms
Software, Algorithms, Performance, Computer Architec-

ture

Keywords
eBNN, DNN, BNN, embedded systems, energy effi-

ciency, embedded device, binary neural network

1 Introduction
Deep Neural Networks (DNNs), which are neural net-

works (NNs) consisting of many layers, are state of the art
machine learning models for a variety of applications includ-
ing vision and speech tasks. Embedded devices are attractive
targets for machine learning applications as they are often
connected to sensors, such as cameras and microphones, that
constantly gather information about the local environment.
Currently, for sensor data to be utilized in such applications,
end devices transmit captured data in a streaming fashion
to the cloud, which then performs prediction using a model
such as a DNN. Ideally, we would leverage DNNs to run on
the end devices, by performing prediction directly on stream-
ing sensor data and sending the prediction results, instead of
the sensor data, to the cloud.

By classifying sensor data immediately on the embedded
devices, the amount of information that must be transmit-
ted over the network can be greatly reduced. As the number
of devices grows on the network, the ability to summarize
information captured by each device, rather than offloading
raw data from the embedded device, becomes increasingly
important. For example, in an object detection application,
it requires 3.072 KB to transmit a 32x32 RGB image to the
cloud but only a single byte to send summary information
about which object among, say, 256 candidate objects is de-
tected in the image (assuming that inference could be per-
formed directly on the device). This reduction in communi-
cation can lead to significant reduction in network usage in
the context of wireless sensor networks.

However, the majority of these devices are severely con-
strained in processing power, available memory, and bat-
tery power, making it challenging to run inference directly.
Therefore, we are interested in new approaches which can
allow DNN inference to be run efficiently on these resource-
limited devices. Additionally, many embedded devices do
not have external memory, meaning that the entire DNN
must fit in the on-device SRAM. Thus, we need to address
the problem of minimizing the memory footprint required for
inference. To this end, we leverage recent results on Bina-
rized Neural Networks (BNNs), where 1-bit weights are used
instead of 32-bit floating-point weights [3]. BNNs thus real-

ize a 32-fold gain in reducing the memory size of weights,
making it possible to fit much larger DNNs on device. Un-
fortunately, while the weights in BNNs are binary, the tem-
porary results stored between layers in inference are floating-
points. Even for small BNNs (e.g., a one-layer convolutional
network), the temporaries required for inference are signif-
icantly larger than the binary weights themselves, making
inference on device not possible.

In this paper, we propose embedded binarized neural net-
works (eBNNs), which achieve a similar 32x reduction to
BNNs in the memory size of the intermediate results used
during layer-by-layer feedforward inference. By reordering
the computation of inference in a BNN, eBNN preserves the
original structure and accuracy of the network, while signif-
icantly reducing the memory footprint required for interme-
diate results. With eBNN, we demonstrate that it is possi-
ble to quickly perform DNN inference (10s of ms) on em-
bedded devices with 10s of KB of memory. In Section 4,
we demonstrate the performance of eBNN on multiple neu-
ral network architectures with two datasets. Additionally,
we make a second contribution addressing the challenge of
programming embedded devices with severe resource con-
straints. To ease programming in these settings, we propose
a cloud-based service, which automates model learning and
eBNN code generation for embedded devices.

2 Related Work and Background
In this section, we provide a short introduction on the

components (referred to as layers) used in deep neural net-
works (DNNs) and show how these layers are extended to
binarized neural networks (BNNs) used in our approach.

2.1 Deep Neural Network Layers
A DNN is a machine learning method composed of mul-

tiple layers. DNNs have seen tremendous success in re-
cent years, across many different input modalities, due to
their ability to learn better feature representations, leading to
higher accuracy, as more layers are added to the network. We
briefly describe the important layers and functions of DNN
feedforward inference that we use in this paper.

• A Fully Connected Layer has full connections to all
neurons in the previous layer and can be viewed as a
matrix multiplication between the input and weights of
the layer. For classification tasks, these layers are typ-
ically used at the end of a NN to map the output to a
vector of length n where n is the number of classes.

• A Convolutional Layer consists of a set of filters typi-
cally learned during model training via supervised back
propagation, which can identify discriminative patterns
found in the input sample. Each filter is convolved with
the input from the previous layer. Filters can have one
or more dimensions based on the target application. In
this paper, which considers 2-dimensional objects, each
filter has two dimensions.

• Max Pooling aggregates the input from the previous
layer using the max operation. This is typically used
after convolution in order to combine extracted features
from local regions in the input signal.

• Batch Normalization is a normalization technique used
to address the covariate shift problem found in DNNs as
demonstrated in [5], and is used to improve the training
time and the accuracy of the network.

• Activation Function are nonlinear functions which are
applied to the output of a layer to improve the repre-
sentative power of the network. In our paper, we use a
binary activation function discussed in the next section.

2.2 Binarized Neural Networks
In 2015, Courbariaux et al. proposed BinaryConnect, a

method of training DNNs where all propagations (both for-
ward and backward step) use binary weights [3]. In 2016,
they expanded on this work with BinaryNet and formally in-
troduced Binarized Neural Networks (BNNs) [2]. The sec-
ond paper provides implementation details on how to per-
form efficiently binary matrix multiplication, used in both
fully connected and convolutional layers, through the use of
bit operations (xnor and popcount). In BNNs, all weights of
filters in a layer must be −1 or 1 (which is stored as 0 and 1
respectively) instead of a 32-bit floating-point value. This
representation leads to much more space efficient models
compared to standard floating-point DNNs. A key to the suc-
cess of BNNs it the binary activation function, which clamps
all negatives inputs to −1 and all positive inputs to 1. XNor-
Net provides a different network structure for BNNs where
pooling occurs before binary activation [8]. In this paper, we
use the BNN formulation described in the BinaryNet paper.

These networks have been shown to achieve similar per-
formance on several standard community datasets when
compared to traditional deep networks that use float preci-
sion. Research on BNNs thus far has primarily focused on
improving the classification performance of these binary net-
work structures and reducing the training time of the net-
works on GPUs. While the 32x memory reduction from
floats to bits of the weights makes BNNs an obvious can-
didate for low-power embedded systems, current BNN im-
plementations are for large GPUs written in one of several
popular GPU frameworks (Theano, Torch) [10, 1]. However,
the computational model of GPUs is organized for high par-
allelism by reusing large temporary buffers efficiently. This
computational model is a poor fit for embedded devices that
have no hardware-supported parallelism and has only a rela-
tively small amount of memory. In Section 3, we show that
the optimal order of computation changes drastically when
transitioning from a GPU environment with large memory
and high parallelism to an embedded environment with small
memory and no parallelism. Our implementation optimiza-
tions based on computation reordering are general and can
be applied to other BNN structures.

3 Embedded Binarized Neural Networks
In this section, we introduce embedded Binarized Neu-

ral Networks (eBNNs), which reorganize the order of com-
putation in standard BNNs by combining multiple layers
into fused blocks. Each fused block uses binary rather than
floating-point temporaries to hold the intermediate results
between the layers. Binarization of temporaries is signifi-
cant, because as we show in Section 4, floating-point tempo-
raries consume a large portion of the total memory of embed-

ded devices, in some cases making it impossible to run BNNs
on embedded devices at all. For example, the Intel Curie,
used in our evaluation, has 15 KB of usable SRAM memory.
The smallest possible 1-layer convolutional BNN (a single
3x3 convolutional filter with 3 channels) would require only
0.022 KB to hold the network parameters (4 floating-point
Batch Normalization parameters and 6 bytes for the single
convolutional filter), but 8.11 KB to hold the floating-point
temporaries (26 x 26 x 3 floating-points) for a 28 x 28 RGB
input image. These temporaries make it difficult to realize
the advantages of binarized representation of a BNN in the
context of embedded devices.
3.1 Fused Binary Blocks

We adopt the concept of NN blocks used in several deep
network architectures [4]. Network blocks each contain one
or more NN layers that can be stacked in a modular fash-
ion just like standard NN layers. In this paper, we introduce
fused binary blocks, which reorder the computation of mul-
tiple NN layers within a block in order to minimize the space
required for intermediate temporary results. Figure 1 shows
three fused binary blocks we use in this paper, operating on
a 28 x 28 input sample: a Fused Binary Fully Connected
(FC) Block, a Fused Binary Convolution Block and a Fused
Binary Convolution-Pool Block. Internally, each block rear-
ranges the order of computation to use only a single floating-
point accumulator, Taccum, and outputs binary rather than
floating-point results, Tres, which are then used as input to
the next block.

Figure 2 shows the order of computation of a binary
convolution layer followed by a pooling layer, as in BNN,
compared to the fused binary convolution-pool block, as in
eBNN. In BNN, all the convolution results are first computed
and stored as floating-point temporaries (the green block).
After convolution is complete, pooling takes place on the
output matrix from convolution. By doing the convolution
and pooling layers in two phases, the network must store the
output of the convolution layer in the floating-point repre-
sentation requiring 26x26 float-point storage of temporaries.

3x3 conv

Binary Activation

Batch Normalization

Tres = 8*26*26

Taccum = 1 float

Fused Binary
Convolution Block

3x3 conv

Taccum = 1 float

Binary Activation

Batch Normalization

Tres = 8*13*13

Fused Binary
Convolution-Pool Block

pool, /2

input
(1 x 1 x 28 x 28)

fc 100

Binary Activation

Batch Normalization

Tres = 1*100

Taccum= 1 float

Fused Binary
FC Block

input
(1 x 1 x 28 x 28)

input
(1 x 784)

Figure 1: Structure of fused binary blocks, where Taccum =
1 float means that temporary Taccum is a single 32-floating-
point number, that holds accumulated floating-point values
used in all layers in the block. Tres stores the binary output
of the block, for 8 filters in this case, which is used as input
by the next block in the network. These blocks are presented
in the context of 2D input data, but can also be used with 1D
and 3D inputs.

In contrast, under eBNN, in the Binary Convolution-Pool
block, the convolution and pooling operations are fused so
that only a single convolution result is stored (in floating-
point format) at a time. In the case of max pooling, only
the maximum of the local pool window is stored. Once the
entire pooling region has been accumulated into Taccum, the
maximum passes through through batch normalization and
a binary activation function and is stored as a single binary
value in the Tres result matrix. In the case of overlapped pool-
ing, we recompute the values in the convolution result matrix
which are used multiple times, in order to keep the lowest
memory footprint possible. Figure 2 shows the computation
required for a single result in Tres with a single filter. In the
general case of multiple filters, the process is repeated for
each filter, and the output Tres will have dimensions of fil-
ters x width x height. Taccum is reused for each filter, as they
are computed one at a time. This reordering prioritizes low
memory usage over parallelism and is tailored specifically
for embedded devices with small memory capacity.
3.2 Memory Cost for Feedforward Inference

In order to generate BNNs that fit within the memory con-
straints of the embedded devices, an accurate memory cost
model for inference using a given network is required. We
can break down the memory requirements of inference into
two parts: the weight and normalization parameters of the

channels (8)

26

26

3x3 conv, 1 filter

conv result
(not stored)

pool result

pool, /2

28

28
13

13

input
(binary)

channels (8)

26

conv result
(floating-point)

28

28
13

13

input
(binary)

BNN

eBNN

Fused Binary Convolution-Pool Block

Taccum BN BinAct

BN BinAct

Tres

pool result
Tres

1 2 3 4

27

676

. . . .
.
.
.
.
.
.
.

677
.
.
.
.

845

.

.

.

.

.

.

.

26

651

689

833

.

.

.

.

. . . .

1 2
3 4

5

6 7
8 9

10

841 842
843 844 845

26

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Comparison of temporary memory usage for BNN
and eBNN. BN is Batch Normalization. BinAct is the Binary
Activation function. For BNN, in the convolution phase,
convolution is performed on each 3x3 patch, and the result
is stored (in green) as input for the pooling layer. By com-
parison, eBNN uses Fused Binary Convolution-Pool Blocks
which fuse the convolution and pooling layer and require one
accumulator, Taccum, to store the intermediate convolution re-
sult. In the case of max pooling, Taccum is computed by seri-
ally comparing each convolution result in a region against
the current max. For a given input area, once all convo-
lution results are accumulated into Taccum the max-pooled
result is sent through the BN and BinAct functions, which
quantizes the floating-point to a single binary value, before
being stored in Tres. The order of the convolution and pooling
operations are shown from 1 to 845.

BNN and the temporaries required to hold intermediate re-
sults between network layers. Since eBNN does not modify
the original BNN network, but instead only reorders com-
putation, the size of the model parameters are identical for
both networks.

For BNNs, the memory size of the temporaries is the out-
put dimensionality of the largest NN layer in floating point
format. Even though the eventual result will be stored in
binary, the intermediate results are stored in floats so that
operations in subsequent layers (such as pooling and batch
normalization) can be readily parallelized over parallel GPU
cores. In eBNN, the memory size is also proportional to
the output dimensions of the largest NN layer, but in binary
rather than floating-point format, as only binary values are
stored. This leads to a theoretical 32x savings in memory for
temporary values. In practice, we store each row of output on
byte boundaries for performance reasons, so there can be a
small amount of memory waste. At worst, this waste is 7 bits
per row of Tres. However, eBNNs can be designed, through
the convolution and pooling stride parameters, so that the re-
sulting Tres rows are always divisible by 8 and therefore have
no waste.

Formally, we write the required memory cost of inference
for eBNN in bits M as M = P+ 2T where P = ∑

N
i=1 pi rep-

resents all of the parameters, where pi denotes the weights
and Batch Normalization parameters for layer-i of an N-layer
network, and T = maxi=1..N T i

res is the required temporaries
for the widest layer in the network. We need twice the max-
imum layer in temporaries to hold both the binary input and
output.

4 Evaluation
In this section, we evaluate the proposed eBNN on an

image classification task; however, the same concept could
apply to other types of common tasks in wireless sensor
networks (WSN) such as sensors detecting intrusion, land-
slide and forest fire or activity recognition using body-area
WSN. Specifically, several different NN structures of vary-
ing depths and two standard community datasets (MNIST,
CIFAR10) [7, 6] are used to evaluated the proposed eBNN.
The device used in our evaluation is the Arduino 101 based
on Intel Curie (32MHz 32-bit Quark SoC) with 24 KB of
SRAM.

Given the small nature of the network we can fit inside the
Curie, we are interested in evaluating the networks on data
samples that are relatively easy to classify. In many settings,
embedded devices will work in a fixed or constrained setting,
with a smaller space of possible data samples. For CIFAR10,
we created a simpler evaluation dataset (CIFAR10-Easy), by
training a large network (a standard DNN with 5 convolu-
tional layers), sorting test samples based on the entropy at
the final softmax layer (before classification), and taking the
10% of samples with lowest entropy. In Section 5, we in-
troduce a service model to train eBNN networks for a target
dataset. We envision this may be used to build a model to
classify a specific task using personalized dataset.

The same computation reordering principle described in
Section 3 is applied to all of the networks. Our first net-
work structure is a Multilayer Perceptron (MLP) composed

input

fused conv-pool
3x3 𝐟𝟐 filters /2,

pool /2

fused fc

output

fused conv-pool
3x3 𝐟𝟏 filters /2,

pool /2

Figure 3: An eBNN used in evaluation
consisting of two layers of fused binary
convolution-pool blocks. f1 and f2 rep-
resent the number of filters in the corre-
sponding layer. The first /2 in the layer de-
scription is the stride for convolution, and
the second pool /2 is the stride for pool-
ing.

of fused binary FC blocks. We use a 1 hidden layer (MLP-
1) and 2 hidden layers (MLP-2) networks for our evaluation.
We are interested in these shallow MLPs due to their wide
applicability and fast inference runtime. Additionally, the
fused binary FC block is needed for the last layer of eBNN
convolution networks, so we are interested in evaluating the
performance of the block in isolation.

We also evaluate eBNN applied to convolutional neu-
ral networks. Figure 3 shows an eBNN fused binary
convolutional-pool network that is used in our evaluation.
The network is a two layer network consisting of fused
binary convolution-pool blocks. Binary convolutional net-
works have more concise representations in terms of model
parameters, but much larger required temporary storage to
hold the intermediate results between layers. These net-
works show off the importance of reordering the computa-
tion as described in the previous section. As mentioned ear-
lier, even a 1-layer convolutional network with a single filter
does not fit within the memory constraints (15KB) of the de-
vice (Intel Curie) using the BNN approach. For the sake of
completeness, we also evaluate convolutional networks with
larger strides in convolution (stride = 3), but without pooling
steps. Practically, these convolution-only networks may still
achieve reasonable accuracy but run faster due to the absence
of the pooling step.

Additionally, for the MNIST dataset, we also consider
two low-energy NN models: Conv-1-LE-I and Conv-1-LE-
II. These models use less memory and achieve reasonably
good performance despite the smaller model size. We use
these models to show that eBNN can be tuned to suit partic-
ular memory, energy and accuracy requirements of a system.

We limit each eBNN to 15 KB as a maximum cutoff point
to ensure each model fits within the device. Some of the
available memory is needed to store program code and han-
dle the incoming input sample so not all 24 KB is used for
the model. Input samples are processed in a streaming fash-
ion (batch size = 1) in order to model a setting where data
would be continuously acquired through attached sensors.

Figure 4 shows the accuracy and runtime of each eBNN
structure on the MNIST and CIFAR10-Easy datasets. The
main observation is that with eBNN the temporary overhead
is only a small portion of the entire memory required for in-
ference across all NN structures. For all networks, the tem-
poraries take up at most 3% of the entire memory required
for inference. The network parameters (i.e., filters and batch

0 2 4 6 8 10 12 14
Memory (KB)

20

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

MNIST: Accuracy and Memory

MLP 1-L

MLP 2-L

Conv 1-L

Conv 2-L

Conv/Pool 1-L

Conv/Pool 2-L

0 2 4 6 8 10 12 14
Memory (KB)

10

20

30

40

50

60

70

80

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

CIFAR10-Easy: Accuracy and Memory

MLP 1-L

MLP 2-L

Conv 1-L

Conv 2-L

Conv/Pool 1-L

Conv/Pool 2-L

Figure 4: The accuracy and memory size of the eBNN evaluation models for
the MNIST and CIFAR10-Easy datasets, as the number of model parameteres
increases. The accuracy shown at each point for eBNN is the same as that for
the corresponding BNN model. For all models, the memory size of temporaries
comprises at most 3% of the overall memory.

100 101 102 103

Runtime per Sample (ms)

20

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

MNIST: Accuracy and Runtime

MLP 1-L

MLP 2-L

Conv 1-L

Conv 2-L

Conv/Pool 1-L

Conv/Pool 2-L

Figure 5: The runtime per sample of each
network configuration as number of net-
work parameters are increased evaluated on
MNIST. The x-axis is a log scale.

normalization parameters) take up the remaining 97% of de-
vice memory. This low memory footprint allows for substan-
tially larger networks to fit on the device than would other-
wise be possible and therefore enables a much higher classi-
fication accuracy.

Table 1 provides detailed results for each eBNN network
corresponding to last point in curve for each network in
Figure 4. For MNIST, the 1-layer MLP (MLP-1) network
achieves an accuracy of 91.54% for the best MLP model
within the memory limit. The 2-layer MLP (MLP-2) per-
forms worse than the single layer version. The 1-layer MLP
also outperforms the 2-layer MLP on the CIFAR10-Easy
dataset. This suggests that in constrained settings, more neu-
rons in a single layer may provide a more substantial accu-
racy gain than an additional layer where the neurons are split
between layers. The 2-layer Convolution-Pool network pro-
vides the best accuracy for MNIST, reaching 97.86%. The
1-layer and 2-layer Convolution only networks (Conv-1 and
Conv-2 respectively) achieve slightly reduced accuracy com-
pared to the pooling variation (ConvPool-1 and ConvPool-2).
For larger networks, with additional network layers, pooling
has been shown to be an important step [9], and even in a
two layer network, we see pooling improves performance.

Figure 5 shows the average runtime, in wall clock time, of
the various models processing a single MNIST sample on the
device. All network settings shown in Figure 4 run inference
under 1 second, with smaller networks running in the 10s of
ms. Interestingly, we see that the convolution model with-
out pooling provides the best trade-off between runtime and
accuracy. The convolution-pool networks provide the best
accuracy, but at the cost of some additional runtime over-
head caused by the pooling operations. The MLP models
perform similarly in terms of runtime to the convolution only
networks but with reduced accuracy.

In order to understand the communication and energy
costs of eBNN, we define a couple terms used in compari-
son to an approach that offloads all sensor data to the gate-
way/cloud. Communication Reduction (CR) is the size of

the sensor input sample over the size of the classification
label. Energy Gain (EG) is the gain in energy by running
eBNN locally on the device versus the amount of power it
takes to transmit (using BLE, Wi-Fi, etc.) the input sample
to another device (which then performs classification). The
Arduino 101 uses 0.150 mW while idle, 0.250 mW during
computation, and 0.200 mW while transmitting over BLE.
For MNIST, it takes 24.5 ms to transmit the 784 bytes input
(28x28 grayscale image) with energy of 6.125 mW. By com-
parison, it takes 31.25 µs to transmit the 1 byte classification
label with energy of 7.8125 µW. This leads to a CR of 784x in
this case. The energy of eBNN is determined by the runtime
of inference for a given model. We see in Table 1 for MNIST,
that the selected MLP-1, MLP-2, Conv-1-LE-I and Conv-1-
LE-II models use less energy than is required to transmit the
sensor input. Specifically, Conv-1-LE-II achieves an EG of
1.5x with maintaining an accuracy of 91%. For the larger
models, eBNN still achieves the same CR while improving
the classification accuracy, for an increase in energy. Similar
trends are seen for the CIFAR10-Easy dataset. The energy
gain of eBNN will increase when other wireless protocols
such as Wi-Fi and 4G are used which can transmit farther
than BLE but consume more energy.

In this paper, we only consider the performance of eBNN
from the viewpoint of a single embedded device. However,
in a network environment with many devices, the high CR
shown in eBNN is even more important. For instance, in
wireless sensor networks connecting these devices, transmit-
ting less amount of data reduces congestion, leading to re-
duced transmission time and energy consumed. Addition-
ally, in the case of multi-hop networks, the total energy re-
quired to transmit the input data from a sensor node to a gate-
way is multiplied by the number of hops it takes to reach the
gateway. Therefore, the CR of eBNN provides larger energy
savings in multi-hop scenarios.

5 Implementation
Our eBNN feedforward inference implementation is

written in C and has a corresponding Python version in

Table 1: Selected eBNN performance results.

MNIST
Model Acc. (%) Time (ms) Mem. (KB) Enrg. (mWs)
MLP-1 91.54 17.35 14.73 5.37
MLP-2 84.65 9.17 13.53 4.95
Conv-1 94.56 53.72 11.48 19.96
Conv-2 96.49 193.02 13.77 63.02
ConvPool-1 97.44 739.34 12.79 213.63
ConvPool-2 97.86 886.53 13.07 243.98
Conv-1-LE-I 91.95 23.91 5.99 6.02
Conv-1-LE-II 90.74 16.47 4.63 4.15
CIFAR10-Easy
Model Acc. (%) Time (ms) Mem. (KB) Enrg. (mWs)
MLP-1 52.30 21.29 13.84 4.37
MLP-2 41.80 19.65 14.00 2.31
Conv-1 74.20 79.21 12.72 13.54
Conv-2 79.80 250.08 14.30 48.64
ConvPool-1 84.30 847.72 12.84 186.31
ConvPool-2 77.20 968.18 13.47 223.41

Chainer [11] that is utilized to train the BNN models. Each
fused binary block has a Chainer link with a modification
that enables it to output the model parameters for that layer
into a generated C file. Once trained in Python, the net-
work is automatically converted into a standalone C header
file with corresponding inference code. We validated the
correctness of the C implementation by comparing the out-
put at each stage to the Python version. Our codebase is
open source and is available here: https://gitlab.com/
htkung/ddnn.

In addition to the software, we implemented a service
model which allows users to train and discover eBNNs that
provide the best prediction accuracy while fitting within the
memory constraints of a specified device. Python code to
screen over this search space is also provided. Since the
training process can use GPU implementations of BNN, we
can quickly run an optimization (on the order of minutes)
that explores various deep neural network models with dif-
ferent parameters to find the best setting for a particular de-
vice and task. We envision this as a useful rapid prototyping
tool to run deep networks on embedded devices. Practically,
it is challenging to port a BNN network written in another
language into an embedded C environment. Our codebase
aims to alleviate this issue.
6 Conclusion

BNNs have huge potential for embedded devices, due to
the 32x reduction in model weights, which can allow deep
networks to fit within the device. However, the temporaries
required to hold intermediate results between layers repre-
sents a substantial portion of memory required to run in-
ference. Temporaries are especially significant for convolu-
tional networks; for BNN the temporary overhead is larger
than the memory size (15KB) of our experimental device
even for a single filter 1-layer convolutional network. Our
proposed eBNN achieves a 32x space reduction for tempo-
raries. The eBNN scheme is based on reordering of com-
putation (including recomputation for overlapping pooling if
required) without changing the structure of original BNNs,
thus preserving the same accuracy as the original network.
The optimizations used by eBNN to mitigate the overhead

of temporaries is a fundamentally different from that in GPU
programming for DNN, that is, our goal is minimizing mem-
ory, rather than using large memory in order to allow paral-
lel processing. Additionally, we proposed a service model
to ease programming on small devices, and to automatically
carry out trade-off screening between accuracy and memory
requirement, as described in in Section 4.

In this paper, we have demonstrated encouraging results
on implementing DNN on embedded devices: run time can
be in the 10s of ms on devices with memory as small as
10s of KB while achieving respectful recognition accuracy.
The fact that a tiny wearable can do fast DNN inference is
somewhat surprising. We are not aware of previous work
that shows this was feasible. Future work includes imple-
menting eBNN on FPGAs, which would be orders of mag-
nitude faster and more power efficient than eBNN on the
Curie due to being able to better exploit the binary struc-
ture of the network. Perhaps eBNN on FPGAs could even
be faster than GPU implementation for the same power con-
sumption. Compiler development for automatic generation
of re-ordered computation for eBNN code could also be a
fruitful direction for future work.
Acknowledgment

This work is supported in part by gifts from the Intel Cor-
poration and in part by the Naval Supply Systems Command
award under the Naval Postgraduate School Agreements No.
N00244-15-0050 and No. N00244-16-1-0018.
7 References
[1] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine

learning software library. Technical report, Idiap, 2002.
[2] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural net-

works with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830, 2016.

[3] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Ad-
vances in Neural Information Processing Systems, pages 3123–3131,
2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep resid-
ual networks. arXiv preprint arXiv:1603.05027, 2016.

[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[6] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. 2009.

[7] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of hand-
written digits, 1998.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural networks. arXiv
preprint arXiv:1603.05279, 2016.

[9] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling oper-
ations in convolutional architectures for object recognition. In In-
ternational Conference on Artificial Neural Networks, pages 92–101.
Springer, 2010.

[10] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,
D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al. Theano:
A python framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv:1605.02688, 2016.

[11] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation
open source framework for deep learning. In Proceedings of Workshop
on Machine Learning Systems (LearningSys) in The Twenty-ninth An-
nual Conference on Neural Information Processing Systems (NIPS),
2015.

