
Mapping Systolic Arrays Onto 3D Circuit
Structures: Accelerating Convolutional Neural

Network Inference
H. T. Kung

Harvard University
Cambridge, MA, USA

kung@harvard.edu

Bradley McDanel
Harvard University

Cambridge, MA, USA
mcdanel@fas.harvard.edu

Sai Qian Zhang
Harvard University

Cambridge, MA, USA
zhangs@g.harvard.edu

Abstract—In recent years, numerous designs have used sys-
tolic arrays to accelerate convolutional neural network (CNN)
inference. In this work, we demonstrate that we can further
speed up CNN inference and lower its power consumption by
mapping systolic arrays onto 3D circuit structures as opposed
to conventional 2D structures. Specifically, by operating in 3D
space, a wide systolic array consisting of a number of subarrays
can efficiently implement wide convolutional layers prevalent in
state of the art CNNs. Additionally, by accumulating intermediate
results along the third dimension, systolic arrays can process
partitioned data channels in parallel with reduced data skew for
lowered inference latency. We present a building block design
using through-silicon vias (TSVs) for the 3D realization of systolic
subarrays. We validate the 3D scheme using a 2.5D FPGA
design and demonstrate that when mapped onto 3D structures
wide systolic arrays can scale up in size without increasing
wiring length in interconnecting subarrays. Further, by taking
full advantage of 3D structures, we are able to pipeline inference
across multiple layers of a CNN over a series of systolic arrays,
dramatically reducing the inference time per input sample. These
improvements lead to significantly reduced inference latency,
which is especially important for real-time applications where
it is common to process samples one at a time.

Index Terms—systolic array, convolutional neural network
(CNN), deep learning, inference latency, accelerator, 3D-IC im-
plementation, wiring length, power consumption, FPGA

I. INTRODUCTION

Hardware accelerators using systolic arrays have recently
been employed with great success for both the training
and inference phases of deep convolutional neural networks
(CNNs). These designs, such as the Google TPU [1], the
ShiDianNao accelerators [2], and numerous other efforts,
including [3], [4], [5], [6], [7], have achieved low power
consumption and high throughput due to systolic arrays’
simplified dataflow architecture and minimum use of I/O (see,
e.g., [8], [9]).

In this section, we first provide a brief review of the
principle of using systolic arrays for CNNs and introduce ter-
minologies that we will use throughout. Then, we describe the
problems we intend to address and preview the contributions
of this paper.

Result
(N output feature maps)

d
1

k
k

M

Convolution

Data
(M input channels)

…

N

N Filters

d
L

M

…

k
k

f
1

f
N

… d
1

d
2

d
L

Filter matrix Data matrix

…

r
1

r
N

…

r
2

Result matrix

f
1

f
2

f
N

(a) Computation of a convolutional layer

(b) Equivalent matrix-matrix multiplication

Fig. 1. (a) Computation of a convolutional layer, and (b) viewed as a matrix
multiplication.

A. Systolic arrays for Convolutional Layers

It is well known that the bulk of the computation of a con-
volutional layer for a CNN can be viewed as a matrix-matrix
multiplication, or for short, matrix multiplication. Suppose that
the convolutional layer has N filters operating on a data volume
of depth M, as depicted in Figure 1 (a). Then, the result of
the convolution computation is the matrix product of the filter
matrix and the data matrix, as depicted in Figure 1 (b) (see
a similar illustration in [10] for a pointwise convolution layer
with all filters being 1×1).

Figure 2 (a) depicts a systolic array design for this matrix
multiplication. It is a weight-stationary systolic array in the
sense that filter weights stored in the array will not move
during computation, whereas input data continuously move
bottom-to-top and result data accumulate left-to-right. For
systolic array synchronization, items in the data and result

(a) A wide systolic
array for a block of
filters (f

i
’s in the

red rectangle)

f
1

f
2

f
N

r
1

r
N

…

r
2

d
L

d
L-1

d
1

…
…Systolic Array

(b) The wide systolic
in (a) partitioned into
four subarrays

Fig. 2. (a) Partitioning a filter matrix into horizontal stripes, each of which
can be implemented with a wide systolic array and (b) partitioning a wide
systolic array into subarrays for their implementation on a given fixed-size
systolic array.

matrices are properly skewed, as shown in the figure. We
assume throughout the paper this weight-stationary systolic
array design, although other systolic designs may also work
in a similar manner, where, for example, input data or result
data may be stationary instead.

B. Wide Systolic Arrays

For a given convolutional layer, we use a wide systolic
array to cover the entire width of the input channels and some
subset of features (a block of rows in the feature matrix), as
depicted in Figure 2 (a). The height of this wide systolic array
is the number of these features (rows). These wide systolic
arrays are intended to accommodate modern CNNs, such as
DenseNet [11] and MobileNet V2 [12], which have layers with
5-20× more channels than filters. A wide systolic array can
process a taller filter matrix by using multiple copies of the
array, a single array in multiple passes, or a hybrid method
involving both preceding approaches.

For practical implementation on a given fixed-size systolic
array hardware (e.g., a chip), we partition a wide systolic
array into a series of narrower subarrays so that each of these
subarrays can fit the given hardware. Figure 2 (b) illustrates
that a wide systolic array in (a) are partitioned into four
subarrays.

Figure 3 summarizes the overall approach. A wide systolic
array (a) is broken into a series of subarrays, the partition
scheme (b) in Figure 3, each of which operating on a subset of
the input channels of the large CNN layer. The partial results
output from a preceding subarray (e.g., the red array) are used
as the initial accumulation values for the following subarray
(e.g., the blue array).

C. Mapping a Partitioned Wide Systolic Array Onto 3D Cir-
cuit Structures for Efficient Parallel Processing

We are interested in mapping a partitioned wide systolic
array onto 3D circuit structures so that subarray modules can
run efficiently in parallel. We note that when a wide systolic
array scales up to have many subarray modules, the systolic
array will need to be folded in order to maintain a reasonable

Systolic ArrayN

M×K2 (M/4)×K2

Sub
Array

Load filter weights to a
wide systolic array

Sub
Array

Sub
Array

Sub
ArrayN

Load filter weights to
four narrow subarrays

(a) Wide Systolic Array (b) Partitioned into Subarrays

M

K
K

N filters of a
CNN layer

⋮ ⋮ ⋮ ⋮ ⋮

Fig. 3. In (a), a single wide systolic array is used to store all of the CNN layer
weights. In (b), four narrow systolic arrays (subarrays) divide the weights over
the M input channels.

aspect ratio for the layout (such as a ratio close to one). In this
case, we will argue that the systolic array can be efficiently
mapped into 3D circuit structures which possesses significant
advantages over conventional 2D structures (see Figure 5).

For sparse filter matrices, we may pack them first before
applying wide systolic arrays. For packing, we may use, for
example, column combining outlined in an earlier paper [10].

D. Contributions

The main contributions of the paper are summarized as
follows:

• 3D Circuit Structures for partitioning a single wide
systolic array into multiple subarrays, each on a different
physical layer of a 3D circuit structure. Partial results be-
tween physical layers are routed over the third dimension
requiring only short wires.

• Reduced Data Skew through Partition-Accumulation
as depicted in Figure 6 (b). This reduces the input data
skew, leading to significant reduction in latency, which is
critical in real-time inferences scenarios where samples
are processed one at a time.

• A Systolic Array Slice as a Building Block for 3D
Structures shown in Figure 10, which allows for a uni-
form design across all physical layers that are connected
by through-silicon vias (TSVs).

• Cross-layer Inference Pipelining by having multiple
CNN layers simultaneously working on a single input
sample over a series of systolic arrays one for each
layer in a pipelined fashion, as illustrated in Figure 12.
Additionally, in Section IV-B, we show that reduced input
data skew based on the partition-accumulating scheme
leads to more efficient pipelining.

• An FPGA Implementation discussed in Section IV-A
which uses a 2.5D FPGA for empirical validation of
the benefits of the 3D structures over conventional 2D
structures for systolic arrays.

II. BACKGROUND AND MOTIVATION

In this section, we describe some properties of systolic
arrays and motivate our proposed 3D circuit design presented

Waste

Waste
M

B×W×H

M

M

Skewed Input Data

Systolic
Array

Use

M

N
Output

Fig. 4. Skewed input data entering a systolic array. Wasted regions (in pink)
are due to the additional skew of one per column. Smaller M lead to higher
utilization of the systolic array. Larger B, W, and H (referring to batch size,
image width and image height, respectively) also increase utilization.

in Section III.

A. Measuring Systolic Array Utilization

As depicted in Figure 2 (a), systolic arrays require input
data to enter at a skewed angle (offset by 1 cycle per column)
in order to maintain synchronization of the input and partial
results. Figure 4 depicts the skewed input data (the green
region) entering the systolic array. The red regions denote
unused or wasted area caused by the input skew. As the
width of the wide systolic array increases, the data skew
also increases, which decreases the systolic array utilization.
Conversely, as the input data size (batch size × image width
× image height) increases, a larger percentage of time is spent
performing useful computation, causing the systolic array
utilization to increase. This relationship between the width of
the systolic array and the size of input data illustrates the
issue with wide systolic arrays and processing samples one
at time (a batch size of 1), as it can leads to underutilization
of the systolic array when the array width is larger the image
width × image height. In Section IV-B, we show that reducing
input skew increases systolic array utilization, especially when
processing samples one a time.

B. Benefits of 3D Circuit Structures

We have proposed to partition a wide systolic array such
as (a) in Figure 3 into multiple subarrays, (b) in the Figure.
However, partitioning a larger systolic array into multiple sub-
arrays introduces several challenges when using conventional
2D circuit structures. Figure 5 compares the layout of four
subarrays in 2D (a) and 3D (b). The 2D structure requires
longer wires to connect systolic arrays that are located on
different rows, indicated by the red wires connecting the blue
and green subarrays. This leads to longer propagation delay
as well as increased power consumption. Additionally, corner
turning is required to route the vertical wires from the blue
array into the horizontal wires of the green array. The corner
turning consumes a routing area proportional to the square
of the height of the subarrays. In the 3D design, the third
dimension can be used to route the partial results between
the physical layers, leading to consistent wire length for all
systolic arrays and removing the corner turning issue. In

(a) Partition Scheme in 2D

longer
wires

(b) Partition Scheme in 3D

TSVs

corner
turning

Fig. 5. Using a 2D circuit structure (a), the wire length connecting two sub-
arrays on different rows is proportional to array height, which is highlighted
by the longer red wires. Using a 3D circuit structure (b), each subarray is
on a different physical layer connected by TSVs, making the wire length
independent from the array height. This enables a consistently shorter wire
length to be used to connect each pair of subarrays.

Section IV-A, we analyze wire lengths for 2D and 3D layouts
using a 2.5D FPGA.

III. PROPOSED APPROACH

In this section, we describe two schemes that use mul-
tiple subarrays to implement wide CNN layers: a partition
scheme (P scheme) and a partition-accumulating scheme (PA
scheme) that reduces the data skew of P scheme through
additional accumulators. We then describe how these schemes
are mapped onto 3D circuit structures. Additionally, we show
how a building block, referred to as a slice, can be used to
implement these subarrays one on each physical layer of the
3D structure. Finally, we discuss how these 3D structures can
be used to perform cross-layer pipelining of CNN inference.

A. Partition and Partition-Accumulating Schemes

Figure 6 presents two partitioning schemes that implement a
single wide systolic array. The P scheme in (a) consists of four
subarrays, with the output from a previous subarray used as the
initial accumulation value for the next subarray. This scheme
requires input to be skewed as in a single wide systolic array.
The final column of input must be skewed MK2−1 cycles,
where MK2 is the width of the original wide systolic array.

The PA scheme, (b) in Figure 6, mitigates the input skew in
the P scheme by using additional accumulators which add the
partial results from each subarray. In this design, the partial
results from the previous subarray are not used to initialize
the next subarray, which removes the dependency between
neighboring subarrays. This reduces the input data skew by
a factor of approximately 4× to (M/4)K2 + 2.

Figure 7 provides pseudo-code for systolic array matrix
multiplication using the P and PA schemes. For illustration
simplicity, the code assumes K= 1. This pseudo-code gives a
precise definition of the computation performed during matrix
multiplication for each scheme. The code for the P scheme is
standard matrix multiplication, where the M loop is partitioned
across the subarrays. The code for the PA scheme explicitly
parallelizes computation over the subarrays and divides the M
loop into partitions which are processed by each subarray. The
final loop over the number of subarrays corresponds to adding
the partial results from each subarray through the additional
accumulators. In the future, we plan to use this pseudo-code to

N

Skew of
(M/4)K2 + 2

Input
Data

Input
Data

Input
Data

Input
Data

0 + + +
Output
Data+

(M/4)K2

(b) Partition-Accumulating Scheme (PA)

N

Skew of
MK2-1

Input
Data

W×H

Input
Data

Input
Data

Input
Data

Output
Data

(M/4)K2

(a) Partition Scheme (P)

(M/4)K2

Fig. 6. The P and PA schemes over four subarrays depicted by (a) and
(b), respectively. For the P scheme, each column of input data is skewed an
additional cycle across all four subarrays, leading to a data skew of MK2−1
for the final column of the purple subarray. For the PA scheme the input to
each additional subarray is offset by only 1 cycle, leading to a data skew
of (M/4)K2 + 2, which is an approximately 4× reduction. The element-wise
addition for a single row in each subarray is shown at the top of the PA
scheme. The dotted lines around the input data denote additional items coming
from below.

(a) Partition Scheme (b) Partition-Accumulating Scheme

Fig. 7. Pseudo-code for systolic array matrix multiplication with the partition
and partition-accumulating schemes.

generate instructions for each scheme, but currently the code
is only used to define the computation.

B. Mapping onto 3D Circuit Structures

We propose to use 3D circuit structures to connect the
subarrays of the P and PA schemes. A 3D structure allows
for the partial results to be transmitted between subarrays
along the third dimension (i.e., through TSVs) which removes
wire routing issues when connecting multiple subarrays in
conventional 2D circuit structures as discussed in Section II-B.

Figure 8 presents a high-level view of the P and PA schemes
mapped onto 3D circuit structures. The P scheme, shown
in (a), connects four physical layers, each implementing a
subarray, with 3D connections that alternate between the left
and right side of each physical layer. This alternating pattern
is used to transmit the partial results computed by the previous
subarray to the following subarray which then uses the results
for accumulation initialization. The layers must alternate in
this fashion since the direction of the data changes with each
layer. In this example, the red subarray accumulates from right
to left and the following blue array accumulates from left to
right (as denoted by the arrows).

The PA scheme, shown in (b) in Figure 8, mitigates the
input data skew by adding accumulators on one edge of each
physical layer, denoted by the darker color regions. These
accumulators add a relatively small amount of additional
hardware, one adder per row in the subarray, and perform
element-wise addition between the rows of the previous and
current subarrays. In this design, the partial output from the
previous layer is not used to initialize the current layer, and

TSVs
+

+

+

+

Element-wise
Addition

From Previous
Partition

(b) Partition-Accumulating Scheme (PA)

TSVs

(a) Partition Scheme (P)
Element-wise

Addition

To Next
Partition

Fig. 8. The partition scheme in (a) connects four physical layers (red, blue,
green, and purple) which each implement a subarray. The TSVs, which
alternate between the left and right side of each physical layer, are used
to transmit partial results to the next layer. The PA scheme in (b) includes
an additional adder for every row in each subarray on the right edge of
the physical layer. These adders perform element-wise addition between the
partial results from the previous array (e.g., the green array) and current array
(e.g., the purple array). The direction of dataflow in each subarray is denoted
by the black arrow.

(b) Partition-Accumulating
Scheme (PA)

(a) Partition
Scheme (P)

Input
Data

Input
Data

Fig. 9. A 3D view of input data entering two subarrays for the P scheme
in (a) and PA scheme in (b). For the P scheme, the data skew for the blue
subarray is from left to right in order to match the flow of accumulation from
left to right. For the PA scheme, the accumulators are shown on the right side
of the two subarrays (dark pink for subarray 1 and dark blue for subarray 2).

therefore all accumulations occur on a single side of each
physical layer (all subarrays accumulate from left to right). We
provide more details on the building block used to implement
each physical layer of the PA scheme in Section III-C.

Figure 9 shows a 3D view of the input data skew for the P
and PA schemes. In the P scheme, the orientation of the input
data skew alternates between layers based on the direction of
accumulation (e.g., from left to right) for that subarray. In the
PA scheme, the orientation is the same for all layers and the
input data skew is dramatically reduced due to the additional
accumulators as discussed in Section III-A.

C. Slice for PA Scheme

Each subarray for the PA scheme is implemented using the
slice design shown in (a) in Figure 10. The motivation for the
slice is to create a building block which can be duplicated
over multiple physical layers in a 3D circuit structure and
be used for all convolutional layers in a CNN. The slice
takes input, weights and partial results through TSVs. The
Demux forwards input and weights to on-slice RAM, which
can then be sent to the subarray. The Demux also forwards
partial results from the previous slice to the Adders circuit,
which performs element-wise addition with the output of the
subarray. Normalization and Activation (the N&A circuit) is

Subarray

N
&

A

From TSV
On-slice RAM D

em
ux

To TSV

Slice 4

(a) Slice for Partition-Accumulating
Scheme (PA)

(b) 3D Stack
of Slices

Slice 3

Slice 2

Slice 1

A
dders

Fig. 10. The slice for the PA scheme (a) receives input data, weights and
partial results from the TSV. Element-wise addition is performed in the Adders
circuit between the subarray output and partial result from the previous slice.
Normalization and Activation is optionally performed in the N&A circuit if
the slice is the last partition of a CNN layer. A 3D stack of slices (b) shows
how multiple slices are implemented on a 3D circuit (connected by TSVs).

performed only for the final slice in each CNN layer. A 3D
stack of slices, (b) in Figure 10, depicts how the uniform slice
design can be repeated for each physical layer. The uniform
nature of the design highlights the benefits of the simple
dataflow architecture of systolic arrays.

D. Cross-layer Pipelining of CNN Inference

While the PA scheme leads to reduced data skew, and
thus reduced delay, the benefit could be isolated to only
a single CNN layer, as normally the complete output from
a convolutional layer is required before starting to process
the next convolutional layer. In this section, we propose a
method for processing multiple CNN layers in parallel, which
dramatically reduces the overall runtime of inference. This
is especially important for datasets with large images sizes
(e.g., ImageNet [13] with an image size of 224 × 224), as
the number of cycles it takes to process a single CNN layer is
proportional to the image size. Bacis et al. proposed a dataflow
approach for pipelining CNN layers using Iterative Stencil
Loops [14]. Here, we show how the dataflow approaches
proposed in Section III-A can be used to further improve
pipelining and decrease the end to end latency for processing
a single sample across the layers of a large CNN.

Figure 11 illustrates how the output from a previous layer
(in red) is passed as input into the next layer (in blue). In (a),
the output from layer 1 enters as input to layer 2 from below,
which follows conventional systolic array design. In (b), layer
2 has been transposed so that the input enters from the right
side. Corner turning is required to route the input to layer 2.
In (c), a 3D view of (b) is shown, with the corner turning
replaced by local connections over the third dimension. We
utilize this 3D approach to implement multiple CNN layers
without requiring corner turning regions to connect the layers.

Figure 12 shows a cross-layer pipeline consisting of three
convolutional layers. Input is passed into the first layer (the
red rectangle) and output from the layer will start arriving
after a number of cycles corresponding to the subarray width.
This intermediate output is immediately passed into the second
layer and the pipelining pattern is repeated for each additional

1

2

1

(a) (b) (c)

Corner Turning Between CNN Layers

2

Fig. 11. Multiple orientations of output from a previous layer (layer 1 in red)
as input to the following layer (layer 2 in blue). In (c) under a 3D circuit
structure, the corner turning shown in (b) is avoided by using connections
along the third dimension.

Pipeline
layer 2 output
as layer 3 input

Pipeline
layer 1 output
as layer 2 input1

2

3

Off-chip
RAM

Cross-layer Pipelining of CNN Inference
Wait for all layer 3 output
and perform classification

corner turn

corner turn

Input

Fig. 12. Cross-layer pipelining for a CNN with 3 convolutional layers (the
red, blue, and green rectangles denoted 1, 2, and 3 respectively). Each CNN
layer is implemented as a 3D stack of slices as shown in (b) in Figure 10. The
dashed colored rectangles represent intermediate output from a layer, which
is pipelined as input to the following layer. The corner turns designate the use
of 3D connections as shown in (c) in Figure 11. For a given input sample, a
barrier (the black vertical bars) is present before classification as it requires
all output from layer 3. Input is read from Off-chip RAM into the pipeline.
Predictions are written back to Off-chip RAM.

layer, up to the final layer, which requires all output before
making a prediction (in the case of a classification task).

Cross-layer pipelining decouples the size of the input data
(i.e., the image width and height) from the delay associated
with a single systolic array processing the input. For cases
where delay is an important factor, such as a real-time
scenarios with a batch size of 1, this technique leads to a
dramatic reduction in the number of cycles required to process
a single sample. In Section IV-B, we show that cross-layer
pipelining can lead to a 10× reduction in latency for inference
for deep CNNs with over 100 convolutional layers. Generally,
the larger the image size, the bigger the advantage for cross
layer pipelining, as the delay associated with image size is
mitigated.

IV. EVALUATION

In this section, we evaluate the proposed benefits of 3D
circuit structures for the P and PA schemes and cross-layer
pipelining as outlined in Section III. Section IV-A compares
2D and 3D systolic array designs as depicted in Figure 5 im-
plemented on a 2.5D FPGA. Section IV-B provides simulation
results for the runtime of inference using of the P and PA
schemes with and without cross-layer pipelining.

PCB

Package Substrate

Silicon Interposer

 Die 1 Die 2

...

...

Microbump

...

...

... ...

Interconnect metal wires
between Die 1 and Die 2

Die 1 Die 2

Die 1 off-chip
connections

Die 2 off-chip
connections

 Flip chip (C4) Bump Ball grid array (BGA) Solder Ball TSV

Fig. 13. The side view of the 2.5D FPGA.

Slice 2

Output

Slice 1

Slice 4Slice 3

Die 1

...
...

corner turning
region

Slice 1 Slice 2 Slice 3 Slice 4

Die 2Die 1

Output

(b) 2.5D layout on two dies
(a) 2D layout on single die

Fig. 14. The 2D layout of the P scheme (a) and the 2.5D layout of the P
scheme (b). The interconnect metal wires between Slice 2 and Slice 3 are
highlighted in red for both layouts. The dashed square regions in (a) denotes
the area taken by corner turning. All wire lines represent 50 1-bit metal wires.

A. FPGA Implementation of 3D Circuit Structures

For the FPGA implementation of the P scheme, we use
the Xilinx XC7V2000TFLG1925 chip [15]. The chip size is
23.85mm x 21.65mm [16] and the total amount of avail-
able on-chip hardware resources is summarized as follows:
1,221,600 LUT (LookUp Table) elements, 2,443,200 Flipflops,
1,292 on-chip RAMs with 36Kb per on-chip RAM.

The chip contains two dies which are connected by approx-
imately ten thousand interconnect metal wires in the silicon
interposer. This architecture is referred to as 2.5D FPGA.
Figure 13 shows the side view of the dies, silicon interposer,
package substrate and PCB (printed circuit board). The TSVs
provide connections for the power/ground, clocking, memory
and control signals between the off-chip components and the
dies.

We design and synthesize the P scheme using the Xilinx
Vivado Design Suite (2018.1). We implement the P scheme
for four slices on the FPGA running at a clock frequency
of 150MHz. Each slice contains a 50 by 50 subarray. The
subarray is implemented in the bit-serial fashion such that one
bit of the result will be generated at each row of the subarray
per clock cycle. Figure 14 (a) shows the 2D layout of the P
scheme, with the four slices placed in two rows. Figure 14 (b)
shows the 2.5D layout of the P scheme, where Slice 1 and
Slice 2 are placed on Die 1 and Slice 3 and Slice 4 are placed
on Die 2. In the 2.5D design, the four slices are placed in
a row with Slice 2 and Slice 3 connected by the shortest 50
interconnect metal wires between Die 1 and Die 2.

We measure the length of the longest interconnect metal
wire between Slice 2 and Slice 3, which are on different
rows in the 2D layout. Among these 50 interconnect metal
wires, highlighted in red in Figure 14 (a), the length of the
longest wire is 6.35mm. Moreover, the length of the longest
wire grows in proportion to the height of the systolic array
since the interconnect wires between Slice 2 and Slice 3 need

to span the height of the slices. In the 2.5D design, the length
of the longest interconnect wire between Slice 2 and Slice 3 is
only 2.11mm since the interconnect metal wires between Slice
2 and Slice 3 do not have to span the height of the slices as
in the 2D design. For a 50 by 50 systolic array, this leads to
the 2.5D design achieving a 3× reduction in the longest wire
length and therefore a 3× reduction in the propagation delay
over the 2D design. In addition, there is a significant gain in
power consumption.

We also measure the total area occupied by the two sets
of corner turning wires connecting Slice 2 and Slice 3 in the
2D design. This corner turning area is shown by the dashed
square regions of (a) in Figure 14. The width of each region is
the pitch of the 50 interconnect metal wires, corresponding to
the 50 rows in each subarray. Therefore the area of the corner
turning regions grow as more rows are added to subarrays. The
total area of the corner turning regions is 4.52mm2, which is
approximately 1% of the total chip area. In the 2.5D design,
all the corner turning wires connecting Slice 2 and Slice 3 are
inside the silicon interposer.

B. Simulation of PA Scheme and Cross-layer Pipelining

In order to show the benefits of the proposed PA scheme
and cross-layer pipelining, we provide simulation results over
a range of CNN widths (i.e., number of filters per layer) and
CNN depths (i.e., number of layers) across both the P scheme
and PA scheme with and without cross-layer pipelining. For
all experiments, we use MobileNet V2 [12], which employs a
bottleneck architecture that alternates between a convolutional
layer with many filters and fewer channels (tall and skinny)
and fewer filters and many channels (short and wide). All
layers are pointwise convolution (i.e., the filters are 1×1), and
a shift operation as described in [17] is employed between
each pair of layers in place of separable convolution used
in MobileNet V2. The input to the network is the CIFAR-
10 dataset [18], which consists of 32×32 RGB images. Each
shift operation increases the pipeline delay by a row of pixels
(e.g., 32 cycles for 32 pixels). A single fully connected layer
is used at the end of the network and is 2-5% of the total
number of cycles for inference. The delay added by the shift
operations and the final fully connected layer are accounted
for in all simulation results. For all networks, we assume that
there are sufficient hardware resources to implement all layers
simultaneously. Additionally, each CNN layer is partitioned
into four subarrays, as depicted in Figure 6, for both the P
and PA schemes.

The number of filters in each layer is parameterized by
a width multiplier, as discussed in [12], which is simply
multiplied by the baseline number of filters for a layer. A
larger width multiplier leads to a wider network, as layers
will have more filters and channels.

Figure 15 (a) reported the simulated number of cycles
required for inference over a range of CNNs as the width
multiplier is increased from 0.1 to 2, increasing the number of
CNN weights from 15K to 1.5M. The depth of all networks is
fixed to 20 layers. The PA scheme provides a 1.8× reduction

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of CNN Weights 1e6

0

2000

4000

6000

8000

10000

12000

14000
Cy

cle
s f

or
 In

fe
re

nc
e

(a) Scaling CNN Width
P
P + Pipeline
PA
PA + Pipeline

0 25 50 75 100 125 150
Number of CNN Layers

0

5000

10000

15000

20000

25000

30000

35000

40000

Cy
cle

s f
or

 In
fe

re
nc

e

(b) Scaling CNN Depth
P
P + Pipeline
PA
PA + Pipeline

Fig. 15. Number of cycles to process a single sample using the P and PA
schemes with and without cross-layer pipelining as the width of the CNN
increases in (a) and the depth of the CNN increases in (b). In (a), the number
of CNN weights is increased by adding additional filters to each layer and each
CNN has 20 convolutional layers. In (b), the width of the network remains
constants regardless of the number of layers, alternating between a layer with
50 filters and 200 channels and a layer with 200 filters and 50 channels
(i.e., the bottleneck architecture of [12]).

in number of cycles over the P scheme for the large CNN
with 1.5M weights. Since the input data skew increases as the
width of each layer grows, the reduced skew of the PA scheme
allows layers to finish processing more quickly. Adding cross-
layer pipelining further reduces the number of cycles by a
factor of 2× for the P scheme and a factor of 4× for the PA
scheme. The large improvement for the PA scheme is due a
4× reduction is data skew, which allows for the next layer to
start processing up to 4× sooner.

Figure 15 (b) shows the number of cycles required for
inference as the number of layers in the CNN is increased
while keeping the size of each layer fixed. In this case, we
see that the schemes with pipelining dramatically outperform
the schemes without pipelining. Specifically, the PA scheme
with pipelining reduces the number of cycles by 10× over
the PA scheme without pipelining when 150 convolutional
layers are used. This improvement is due to many layers being
able to work in parallel with cross-layer pipelining (as shown
in Figure 12) as opposed to only a single layer working at
a time without pipelining. This highlights the importance of
cross-layer pipelining for deep networks, as the added depth
which conventionally has a significant impact on training and
inference runtime is mostly mitigated.

V. CONCLUSION

In this work, we introduce two partitioning methods for
systolic arrays, the P and PA schemes, in order to support
wide convolutional layers common in state of the art CNNs.
We demonstrate that the PA scheme reduces the input data
skew by a factor proportional to the number of partitions
used, leading to a significant reduction in inference runtime
as shown in Section IV-B. We claim that these partitioning
schemes are naturally supported by 3D circuit structures, as
partial results between subarrays on different physical layers
can be routed along the third dimension, leading to a consistent
short wire length. In Section IV-A, we support this claim with
empirical results on wire length for 2D and 2.5D layouts of
systolic arrays implemented on a 2.5D FPGA. Additionally, we

demonstrate the effectiveness of cross-layer pipelining when
each layer is implemented using the PA scheme, leading to a
10x reduction in inference runtime over the baseline P scheme
as shown in Figure 15. We hope that these results encourage
further work to explore the landscape of efficient systolic
array designs in conjunction with pipelining computation over
entire CNNs as well as 2.5D and 3D implementations for both
training and inference.

ACKNOWLEDGEMENTS

This work is supported in part by a gift from MediaTek
USA and in part by a Joint Development Project with TSMC.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture.
ACM, 2017, pp. 1–12.

[2] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92–104.

[3] R. Merritt, “Arm at risk on ai chip marketc,” EE Times India, April
2018.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[5] S. Wang, D. Zhou, X. Han, and T. Yoshimura, “Chain-nn: An energy-
efficient 1d chain architecture for accelerating deep convolutional neural
networks,” in 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017, pp. 1032–1037.

[6] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 2016, pp. 1–12.

[7] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in Design Automation Conference
(DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

[8] H. T. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse
Matrix Proceedings 1978. Society for Industrial and Applied Mathe-
matics, 1979, pp. 256–282.

[9] H. T. Kung, “Why systolic architectures?” IEEE Computer, vol. 15, pp.
37–46, 1982.

[10] H. Kung, B. Bradley, and Q. Z. Zhang, “Adaptive systolic arrays for
sparse convolutional neural networks,” in Pattern Recognition (ICPR),
2018 24th International Conference on. IEEE, 2018.

[11] G. Huang and Z. Liu, “Densely connected convolutional networks.”
[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“Inverted residuals and linear bottlenecks: Mobile networks for classi-
fication, detection and segmentation,” arXiv preprint arXiv:1801.04381,
2018.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[14] S. Bang, J. Wang, Z. Li, C. Gao, Y. Kim, Q. Dong, Y.-P. Chen, L. Fick,
X. Sun, R. Dreslinski et al., “14.7 a 288µw programmable deep-learning
processor with 270kb on-chip weight storage using non-uniform memory
hierarchy for mobile intelligence,” in Solid-State Circuits Conference
(ISSCC), 2017 IEEE International. IEEE, 2017, pp. 250–251.

[15] “7-series product selection guide,” https://www.xilinx.com/support/
documentation/selection-guides/7-series-product-selection-guide.pdf.

[16] “Device reliability report,” https://www.xilinx.com/support/documentation/
user guides/ug116.pdf.

[17] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad,
J. Gonzalez, and K. Keutzer, “Shift: A zero flop, zero parameter
alternative to spatial convolutions,” arXiv preprint arXiv:1711.08141,
2017.

[18] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” 2014.

