
Adaptive Tiling: Applying Fixed-size Systolic
Arrays To Sparse Convolutional Neural Networks

H. T. Kung
Harvard University

Cambridge, MA, USA
Email: kung@harvard.edu

Bradley McDanel
Harvard University

Cambridge, MA, USA
Email: mcdanel@fas.harvard.edu

Sai Qian Zhang
Harvard University

Cambridge, MA, USA
Email: zhangs@g.harvard.edu

Abstract—We introduce adaptive tiling, a method of partition-
ing layers in a sparse convolutional neural network (CNN) into
blocks of filters and channels, called tiles, each implementable
with a fixed-size systolic array. By allowing a tile to adapt its
size so that it can cover a large sparse area, we minimize the
total number of tiles, or equivalently, the number of systolic array
calls required to perform CNN inference. The proposed scheme
resolves a challenge of applying systolic array architectures,
traditionally designed for dense matrices, to sparse CNNs. To
validate the approach, we construct a highly sparse Lasso-Mobile
network by pruning MobileNet trained with an `1 regularization
penalty, and demonstrate that adaptive tiling can lead to a 2-
3x reduction in systolic array calls, on Lasso-Mobile, for several
benchmark datasets.

I. INTRODUCTION

The bulk of convolutional neural network (CNN) computa-
tion is matrix multiplication [7]. To speed up the operations
of matrix multiplication, one may use systolic array multipli-
ers [9, 10]. The systolic approach has an important advantage
of minimizing the I/O cost by allowing a row or column of a
matrix operand to enter the processor array only once for all of
its dot product computations. For this reason, systolic arrays
have been utilized in some recent processor implementations
for CNNs (e.g., [3, 4] and Google’s Tensor Processing Unit
(TPU) [7]).

However, systolic matrix multipliers are traditionally de-
signed for dense matrices, while many efficient CNN archi-
tectures, such as those derived with weight pruning methods,
consist of sparse filters where a high percentage of weights
are zero. For example, pruning methods such as [5] and those
based on Lasso (Regression Shrinkage and Selection via the
Lasso) [14], significantly reduce the resource usage of a CNN,
by removing filter weights from CNN layers. The remaining
nonzero weights are distributed in an unstructured manner;
this leads to suboptimal efficiency when conventional systolic
arrays designed for dense matrices are used, as weights with
zero values are still allocated in the systolic array.

In using a given fixed-size systolic array for a large CNN,
we face another issue, namely, efficient partitioning of the
CNN layers into small blocks so that each block is imple-
mentable with the systolic array. We want to use a small
number of these blocks in order to minimize the number of
subroutine calls to the systolic array.

(a) Fixed Tiling (b) Adaptive Tiling

Fig. 1. A sparse filter matrix with the rows and columns sorted by the number
of nonzero weights depicted under two tiling schemes. Each tile corresponds
to a call to the systolic array. In (a), a 10 × 10 conventional systolic array
can only cover 10× 10 red tiles, resulting in 107 tiles required for the entire
matrix. In (b), a 10× 10 systolic array with adaptive tiling can cover green
tiles which span a variable width based on the sparsity of the covered area,
requiring only 45 tiles.

To address these challenges of implementing sparse CNN
layers with a fixed-size systolic array, we propose adaptive
tiling in this paper. We partition convolutional layer into blocks
of filters and channels, called tiles, each implementable with
a fixed-size systolic array. By allowing a tile to cover a larger
area that exhibits a higher degree of sparsity, we minimize the
total number of tiles, or equivalently, the number of systolic
array calls. Adaptive tiling is able to cover wider sparse areas
by combining multiple input data columns into a single column
in the systolic array. At each cell in the systolic array, only one
of the input data columns is utilized. In Section III-C, we show
that the addition of multiple columns per cell adds a minor
hardware cost compared to circuitry required for the Multiply-
Accumulator (MAC) operations of matrix multiplication.

To illustrate the adaptive tiling approach, consider a filter
matrix of a CNN layer, where each row is a filter in the
layer and each column is a corresponding channel across
all filters. Assume the CNN layer is pointwise convolution
(i.e., each filter is 1 × 1 instead of 3 × 3 as in standard
convolution). As discussed earlier, these filters generally have
a high percentage of zero weights, making the filter matrix
highly sparse. Figure 1 depicts such a sparse filter matrix for

the Lasso-Mobile network described in Section II-C, after the
rows and columns have been sorted by the number of nonzero
weights (black squares) present. The matrix multiplication for
this CNN layer is the multiplication of this sparse filter matrix
and an input data matrix (see Figure 4).

Partitioning the matrix multiplication for computation on
a fixed-size systolic array amounts to tiling the sparse filter
matrix into tiles which can each fit into the systolic array. The
weights in each tile must be loaded into the systolic array
and then the corresponding input data for every tile must be
passed into the systolic array to perform matrix multiplication
for the tile. The partial results generated by each tile are then
added together to achieve the final result (the complete matrix
multiplication between the filter matrix and data matrix). It is
desirable to minimize the number of tiles, as this corresponds
directly to the total execution time required to process the
complete matrix multiplication.

Figure 1(a) illustrates that a conventional non-adaptive 10×
10 systolic array can only cover 10× 10 dense tiles, resulting
in many tiles (107) to cover the entire matrix. In contrast,
Figure 1(b) illustrates that a 10×10 systolic array with adaptive
tiling can cover not only 10×10 dense tiles but also sparse tiles
of larger sizes by increasing the tile width, resulting in fewer
total tiles (45) for the sparse matrix. In practice, this would
lead to over a 2x decrease in the runtime of the complete
matrix multiplication, as it requires less than half the number
of systolic array calls.

We summarize the contributions of this paper:
• An adaptive tiling method where tiles can expand to cover

sparse areas of a filter matrix. As discussed in Section III,
this is achieved using a systolic array design with multiple
data columns per systolic cell.

• A network based on MobileNet that is trained with a
simple `1 penalty, which we refer to as Lasso-Mobile.
This achieves a highly sparse model compared to other
approaches that aim for reduced model size.

• Analysis of the proposed adaptive tiling scheme com-
pared against the conventional fixed tiling scheme.

II. BACKGROUND

In this section, we first review Lasso-based regularization
methods for reducing the number of weights in a CNN model.
We then discuss systolic architectures as traditionally applied
to dense matrix multiplication before describing our adaptive
tiling approach to extend them to sparse filter matrices in
Section III.

A. Lasso-based Methods to Reduce Model Size

Multiple papers in recent years have described methods
for reducing the number of parameters in a learned CNN by
applying Lasso penalties on the weights of the CNN. A simple
form of this type of penalty is:

E(W) = ED(W) + λ · ||W||1 (1)

where W is the set of all weights in the CNN, E(W) is the
total loss, ED(W) is the loss with respect to the objective

(e.g., classification), ||W||1 is the `1 penalty, and λ is the
weight of the `1 penalty1. Larger values of λ lead to sparser
W. Equation 1 operates on all convolutional layers of a given
CNN, denoted by W, which could be MobileNet as describe in
Section II-C. ED is the loss over the training set. In Section IV,
we use the original training set specified by each dataset.

By applying the Lasso penalty to each weight independently,
the network may learn unstructured and irregular patterns
of nonzero weights. While this model achieves considerable
compression compared to the original CNN, the lack of
structure in the nonzero weights makes it difficult to realize a
corresponding speedup in efficiency on conventional hardware
such as GPUs. This has lead to a multitude of approaches
that aim to add some form of structure to the sparsity in
order to achieve better GPU computational efficiency while
still maintaining a good reduction in model size.

Among these approaches, Wen et al. [15] introduced the
notion of structured sparsity by grouping the weights of each
filter (filter-wise grouping) and the channels across all filters
(channel-wise grouping) in a convolutional layer [15]. These
groups are achieved by applying Group Lasso [17] to each
filter or channel based on the desired sparsity structure. Group
Lasso methods can lead to structures which are more accom-
modating to efficient implementations. However, as shown
in the Table 2 of [12], without looking at computational
efficiency, the sparsest model with best performance in terms
of reducing the number of weights is achieved with a block
size of 1×1, which is similar to Equation 1. Therefore, in this
work we focus on an adaptive tiling method that is amenable
to the type of sparsity seen when networks are trained with
Equation 1, as they appear to achieve the best ratio between
model accuracy and number of nonzero model weights.

B. Systolic Matrix Multiplier
A systolic array for matrix multiplication consists of a 2D

array of systolic cells, as depicted in Figure 2 for a 3 × 3
array [9]. Each systolic cell is a MAC with two input and two
output ports. In our design, a systolic cell has a pre-stored
filter weight w. When a data item d arrives from the bottom
input port, the cell computes the product w·d and adds it to an
accumulating variable arriving from the left input port. After
the MAC operation, the data item d enters the cell above.

Google developed the TPU in 2015 which utilizes a systolic
architecture for CNN inference [7]. TPUs have been deployed
in Google datacenters to perform efficient inference for CNN
applications and significantly reduce the associated energy
costs. While TPUs are more efficient than standard computing
apparatuses, such as GPUs, they do not efficiently handle
sparse filter matrices. In the worst case, each zero weight uses
a cell in the systolic array (even though the MAC adds a zero
to the partial result) in order to maintain synchronization of
data. In Section III, we describe systolic arrays with adaptive
tiling, which utilize multiple data columns per cell, in order
to allow tiles to span more data columns for sparser regions
of filter matrices.

1We use similar notation to that described in [15].

W3,1 W3,2 W3,3

W2,1 W2,2 W2,3

W1,1 W1,2 W1,3

d1 d2 d3

Systolic Array

Fig. 2. A 3 × 3 systolic array. Each input, such as d1, is utilized by
all three cells in the corresponding column, e.g., cells in the first column
containing W1,1, W2,1, and W3,1.

C. MobileNet and Lasso-Mobile

Based on depthwise separable convolution [1], MobileNet
[6] has achieved state-of-the-art model compression results.
Figure 3 shows the depthwise separable convolution layer
in (a) and the MobileNet architecture in (b), as outlined
in [6], which is used for all experiments in Section IV.
In a MobileNet, computation at each convolutional layer is
accomplished by applying depthwise 2D convolutions to each
channel, followed by pointwise convolution over all channels.
The pointwise convolution has a cost proportional to the
number of filters in the layer, while depthwise 2D convolutions
do not. Thus, pointwise convolution typically dominates the
total cost (e.g., 95% of total Multiply-Adds). For this reason,
we focus on applying the proposed adaptive tiling scheme to
pointwise convolution layers.

In order to achieve a MobileNet with sparse pointwise filter
matrices, we apply the `1 penalty as shown in Equation 1. The
regularization leads to a high percentage of weights (e.g., 80%)
being set to zero. We refer to the resulting network as Lasso-
Mobile. As we show in Section IV, Lasso-Mobile is able
to significantly reduce the required number of weights when
compared to MobileNet. This savings translates directly into
fewer tiles when using the adaptive tiling method on the sparse
filter matrices.

D. Systolic Array for Pointwise Convolution

As shown in Figure 4, we can express pointwise convolu-
tion in a depthwise separable layer as matrix multiplication
between a filter matrix F and data matrix D, where each row
in F is composed of weights of a filter over the channels, and
each column of D is composed of results of depthwise 2D
convolutions over the channels for a point in the feature map.

We use a 2D systolic array (Figure 2) for the matrix
multiplication in the the pointwise convolution, where the
array pre-stores the filter matrix F , with one weight in each
systolic cell. As mentioned earlier, this systolic approach
has an important advantage in that each column of the D
matrix enters the systolic array only once for its dot product
computations with all the filters in F , thereby minimizing the

1x1 Conv,
filters=N, stride=1

Batch Normalization

ReLU Activation

3x3 Depthwise Conv,
filters=C, stride=s

Batch Normalization

ReLU Activation

(a) Depthwise Separable
Convolution Layer (DWS-Conv)

DWS-Conv, C=64, N=128, s=1

DWS-Conv, C=32, N=64, s=2

DWS-Conv, C=128, N=256, s=1

DWS-Conv, C=128, N=128, s=2

DWS-Conv, C=512, N=512, s=1

DWS-Conv, C=256, N=256, s=1

5x

DWS-Conv, C=512, N=1024, s=1

FC, 1024 x number of classes

3x3 Conv, filters=32, stride=1

Batch Normalization

ReLU Activation

Average Pooling, w x h

(b) MobileNet

DWS-Conv, C=256, N=512, s=1

Fig. 3. A Depthwise Separable Convolution layer (DWS-Conv), in (a),
consists of a depthwise convolution with C 3 × 3 filters and a stride of
s followed by standard convolution with N 1 × 1 × C filters, which is
referred to as pointwise convolution. MobileNet, in (b), begins with a standard
convolution layer followed by 12 depthwise separable convolution layers,
average pooling across the spatial dimensions (width and height), and finally
a Fully Connected (FC) layer. The 5x denotes that the layer is repeated five
times.

I/O cost. For filter matrices larger than the fixed size of the
systolic array, we run the systolic array in multiple passes, one
for each tile.

Note that the filter matrix F for Lasso-Mobile is sparse,
as Figure 1 illustrates, with a high percentage of weights
being zeros. As we will describe in the following section,
the proposed adaptive tiling approach can adapt the width of
each tile based on the sparsity, therefore requiring fewer tiles
overall.

III. OVERVIEW OF THE ADAPTIVE TILING APPROACH

When a given fixed-size systolic array is too small to fit an
entire filter matrix, such as the case for the pointwise layers
in Lasso-Mobile, we use adaptive tiling to partition the matrix
into tiles as illustrated by Figure 1. Tiling is adaptive in the
sense that tiles may be of varying widths so that a wide tile
can be used when covering a sparse area. The objective is to
minimize the total number of tiles, as each tile requires a pass
through the systolic array.

We achieve the tile adaptation by allocating multiple data
columns, i.e., the corresponding columns of the filter matrix
(channels), to a single column of the systolic array. For a
region in the filter matrix with a higher degree of sparsity, more
data columns can be allocated to a single column, resulting in a
wider tile. There are several considerations affecting the width
of a tile, including the systolic array width (number of systolic
cells in a row), the sparsity of the region in the filter matrix,
the number of data columns allowable for each systolic cell,
and the number of conflicts permitted between those columns

d1

1

1

C

Pointwise Convolution

Input
Data

Depthwise
Convolution

Filters

N

Pointwise
Convolution

Results

Pointwise
Convolution

Filters

Depthwise
Convolution

Results

C

dM

C

…

1

1

f1

fN

… d1 d2 dM× =

Filter Matrix
(Pointwise Convolution Filters)

Data Matrix
(Depthwise Convolution Results)

…

r1

rN

…

r2

Results Matrix
(Pointwise Convolution Results)

f1

f2

fN

C

Depthwise Convolution

3

3

(a)

(b)

Fig. 4. Depthwise Separable Convolution consists of Depthwise Convolution
with C 3 × 3 filters, followed by Pointwise Convolution with N 1 × 1 ×
C filters, as depicted in (a). Pointwise convolution between the depthwise
convolution result and the pointwise convolution filters can be computed as
a matrix multiplication between the filter matrix and the data matrix. In (b),
each row f of the filter matrix F corresponds to a 1 × 1 × C pointwise
convolution filter, and each column d of the data matrix D corresponds to
the 1 × 1 × C vector formed by concatenating each element of depthwise
convolution results across the channels.

of the filter matrix which share the same systolic array column.
We elaborate on these issues in the following section.

A. Adaptive Tiling via Multiple Columns per Cell

Adaptive tiling enables a fixed-size systolic array to span
more data columns than physical columns in the array by
passing multiple data columns into a single systolic array
column. When a filter matrix is sparse, only a subset of the
data columns are typically used in each row. Therefore, in this
case, multiple data columns can be combined into a single
physical column in the systolic array as they are never used
at the same time by any row (i.e., only one weight is nonzero
per row across the multiple data columns).

Figure 5 shows a 3×3 systolic array with two data columns
per systolic array column. For example, for the first column
which takes d1 and d2, the two data columns are passed into
the lower left cell in the array simultaneously. However, only
d1 is used in the cell which stores W1,1. The weight W1,2

corresponding to d2 is zero and therefore not required. Each
additional cell in the systolic array column selects between d1
and d2 in this manner based on which corresponding weight is
nonzero. Thus, when each systolic array column contains two
data columns, the adaptive tiling scheme is able to double the
width of the tile implementable by the fixed-size array (from
3 data columns to 6 data columns as depicted in Figure 5).

B. Selecting Columns to Be Combined

In order to combine two or more data columns into a
single systolic array column, multiple data columns can never
be required by the same row, as only a single MAC is
implemented within each cell. If multiple data columns have
nonzero weights in the same row, then all but one with the
largest magnitude must be omitted from the result for the

W3,2 W3,3 W3,5

W2,2 W2,3 W2,6

W1,1 W1,4 W1,5

d1 d3 d5

Systolic Array with Two
Data Columns per Cell

d2 d4 d6

Fig. 5. A 3×3 systolic array with two data columns per cell. The first systolic
array column takes data columns d1 and d2, and uses d1 in row 1 and d2 in
rows 2 and 3. d1 is not needed in rows 2 and 3 as the corresponding filter
weights (W2,1 and W3,1) are zero.

corresponding row. Therefore, ideally we aim to combine
columns that do not conflict in any row in the sparse filter
matrix.

However, in practice, we allow a small amount of over-
lapping use between data columns, such as 2-3 conflicts, in
order to have wider tiles. The small amount of overlap does
not significantly impact the result of CNN inference due to
robustness of the network to small perturbations. In this case, a
conflict can be viewed as a form of pruning, where the weight
with the smaller absolute value is pruned. For the empirical
results shown in Section IV, we allow for up to 3 conflicts
between data columns which share a single column of the
systolic array. If more than 3 conflicts exist, then these data
columns are allocated into separate systolic array columns.

C. Cost of Multiple Data Columns per Cell

Having given a high-level description of the systolic cells
used in the adaptive tiling approach, we now provide a brief
analysis on the cost of augmenting the MAC function of a
systolic cell with multiple data columns. Suppose that the
MAC is 16-bit and uses a bit-serial implementation. This
MAC requires at least 16 1-bit full adders to implement
the multiplication in a bit serial fashion. A multiplexer is
required within each cell in order to select the data column that
corresponds to the weight stored within the MAC. Compared
to the MAC, the number of gates required to implement the
multiplexer is substantially smaller (only 4 gates for a 2-to-
1 multiplexer corresponding to two data columns per cell).
For highly sparse filter matrices (e.g., under 5% nonzeros),
more than two data columns could be added into each cell
to span the even sparser regions. Therefore, the adaptive
tiling approach can efficiently accommodate highly sparse
CNNs such as Lasso-Mobile, resulting from aggressive weight
pruning with Lasso regularization.

IV. EVALUATION

In this section, we analyze the performance of adaptive
tiling over fixed tiling for sparse filter matrices in Lasso-

Mobile. First, we show that Lasso-Mobile achieves a much
smaller number of nonzero weights, up to a 57x reduction,
while still maintaining similar classification accuracy com-
pared to standard MobileNet. Then, we examine how the
unstructured sparse weights in the pointwise layers of Lasso-
Mobile are amenable to the proposed adaptive tiling approach
which provides a 2-3x reduction in required tiles, or systolic
array passes, over a conventional fixed tiling approach.

A. Evaluation Setup and Datasets

We evaluate the performance of the MobileNet and Lasso-
Mobile models on three datasets of varying difficulty. Fashion-
MNIST [16] is a dataset that aims to provide an alternative
to MNIST [11] as a baseline dataset for evaluation. It has
the same image resolution of 1 × 28 × 28 and the same
number of samples as MNIST, but is significantly harder as the
samples are clothing items instead of digits. CIFAR-10 [8] is
a more challenging RGB image dataset with resolution of
3×32×32. Tiny ImageNet [2] is a subset of the ILSVRC-2012
ImageNet [2] dataset, containing 200 of the 1000 classes, with
500 training samples per class, downsampled to a resolution
of 3 × 64 × 64. We use a Top-5 accuracy measure for Tiny
ImageNet as is a common practice with ImageNet. MobileNet
is trained using Stochastic Gradient Descent (SGD), with a
learning rate of 0.02, and a Nesterov momentum of 0.9 [13].

Lasso-Mobile is trained in a similar fashion, but initialized
with the learned weights of the MobileNet model. The `1
penalty uses λ of 0.0005 (see Equation 1) for all Lasso-Mobile
networks. After training the Lasso-Mobile network, weights
smaller than 0.002 are set to zero. If an entire filter or channel
is zero it is pruned from the network before tiling occurs.

B. Impact of Model Size on Classification Accuracy

In the MobileNet paper, the authors mention that a simple
method for reducing the number of model parameters is to
decrease the number of channels in the pointwise layers, as
they represent the majority of the model weights in the net-
work. Figure 6 compares the MobileNet and Lasso-Mobile net-
works while varying number of channels. Each Lasso-Mobile
network is trained using the corresponding reduced channel
MobileNet network and achieves a significantly reduces model
size while maintaining similar accuracy. The largest network
(baseline MobileNet shown in Figure 3), contains over 2
million weights in the pointwise layers (the rightmost point
on the red curve in Figure 6 (b)). The corresponding Lasso-
Mobile network contains only 35K weights for the Tiny
ImageNet dataset (the highest point on the blue curve in
Figure 6 (b)), or a 57x reduction in nonzero weights compared
to the MobileNet model. Note that the final two points on
the Lasso-Mobile curve have a similar number of nonzero
weights after pruning due to the Lasso penalty, even though
the corresponding original MobileNet models on the red curve
differ by a factor of 2x in number of nonzero weights.

This reduction in weights for the Lasso-Mobile networks
translates directly into a reduction in the number of systolic

104 105 106

Number of Nonzero Weights

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

(a) CIFAR-10

MobileNet
Lasso-Mobile

104 105 106

Number of Nonzero Weights
57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5
(b) Tiny ImageNet

MobileNet
Lasso-Mobile

Fig. 6. Comparing the performance of MobileNet under different numbers
of channels (as suggested in [6] as a way of reducing model size) to Lasso-
Mobile for the CIFAR-10 and Tiny ImageNet datasets. The x-axis is the total
number of nonzero weights in all pointwise layers in log scale. Each point
on the MobileNet curve is used as the initial model to train a corresponding
point on the Lasso-Mobile curve.

array passes required to implement Lasso-Mobile over Mo-
bileNet. This shows the benefit of using Lasso even when the
starting model, MobileNet, is already considered to have a
small number of weights. Additionally, comparing the lowest
points for both the MobileNet and Lasso-Mobile curves in
Figure 6 (b), the Lasso-Mobile network achieves a 1.4x
decrease in number of nonzero weights, from 8.2K to 5.8K,
while maintaining similar accuracy. This suggests that even
smaller pointwise filter matrices have unnecessary weights, as
they can be pruned without a loss of accuracy.

C. Number of Nonzero Weights per Pointwise Layer

Figure 7 shows the number of nonzero weights in each
pointwise layer of Lasso-Mobile for all the datasets. Even
though all three networks start with the same number of
parameters, over 2 million total weights in the pointwise
layers, they each achieve a different total number of nonzeros.
Tiny ImageNet uses substantially more nonzero weights in the
last layers, which is most likely due to the much larger number
of classes (200 versus 10 for Fashion-MNIST and CIFAR-10).
Additionally, the distribution of nonzeros is different for each
network. For instance, the CIFAR-10 model has significantly
more nonzeros in the 5th and 6th pointwise layer than the
Tiny ImageNet model, and significantly less nonzeros in the
last layers. This indicates that the optimal number of filters per
layer is dependent on the dataset, and would generally require
extensive hyper-parameter search to find.

D. Efficiency Gains of Adaptive Tiling

Figure 8 shows the efficiency gains of using adaptive tiling
over fixed tiling for each pointwise layer for the Lasso-Mobile
network trained for CIFAR-10 in (a) and Tiny-ImageNet in (b).
By using adaptive tiling, we are able to make fewer systolic
array calls by creating tiles which cover wider sparse regions
as compared to fixed tiling. The gain in efficiency is measured
by the number of tiles in adaptive tiling over that for fixed
tiling.

We see that the adaptive tiling method substantially outper-
forms the fixed tiling method by a factor of 2x to 3x for all

1 2 3 4 5 6 7 8 9 10 11 12
Pointwise Convolution Layer

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f N
on

ze
ro

 W
ei

gh
ts Fashion-MNIST

CIFAR-10
Tiny Imagenet

Fig. 7. The number of nonzero weights in each pointwise convolution layer
for the three evaluation datasets using Lasso-Mobile. The total number of
nonzeros for all pointwise convolution layers is 6K for Fashion-MNIST, 21K
for CIFAR-10, and 35K for Tiny ImageNet.

1 2 3 4 5 6 7 8 9 10 11 12
Pointwise Convolution Layer

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ad
ap

tiv
e

ov
er

 F
ix

ed
 T

ile
s

(a) CIFAR-10
2 Columns per Cell
3 Columns per Cell
4 Columns per Cell

1 2 3 4 5 6 7 8 9 10 11 12
Pointwise Convolution Layer

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
(b) Tiny ImageNet

2 Columns per Cell
3 Columns per Cell
4 Columns per Cell

Fig. 8. The ratio of required systolic array calls for the adaptive tiling scheme
over the fixed tiling scheme for each pointwise layer in CIFAR-10 Lasso-
Mobile model (a) and Tiny-ImageNet Lasso-Mobile model (b). The lines
denote different number of data columns per cell (2, 3, or 4) within each
systolic cell using adaptive tiling. For all settings, a systolic array size of
10× 10 is used, and three conflicts are allowed among data columns sharing
a systolic array column, as discussed in Section III-B.

pointwise layers. The benefit is slightly reduced in the earlier
layers, which are considerably smaller and denser than the
latter layers. The latter layers see the largest benefit, as they are
larger and significantly sparser. Increasing the number of data
columns per cell from 2 to 4 reduces the number of tiles from a
factor of 2x to 3x. This suggests that allocating more columns
in each systolic cell, while making the implementation slightly
more expensive, leads to adaptive tiling which can fit much
larger sparse areas, and therefore require fewer array calls
overall.

V. CONCLUSION

In this paper we consider the problem of using a given
fixed-size systolic array for inference on large sparse CNNs.
To minimize the number of systolic array calls, we take a
two-step approach. First, we use Lasso with a `1 penalty to
prune an exiting network such as MobileNet. Second, we use
adaptive tiling to partition the resulting network such as Lasso-
Mobile for implementation with the fixed-size systolic array.

We demonstrate that the first step can lead to a significant,
up to 57x, decrease in the number of weights, and thus
calls to the systolic array. However, the remaining weights
are distributed in an unstructured manner, making efficient

inference with conventional systolic arrays designed for dense
matrices (fixed tiling) difficult. The second step addresses
this issue by using adaptive tiling, which enables a fixed-
size systolic array to span a variable width based on the
sparsity of the tile. This is enabled by modifying each cell in
a systolic array to take two or more data columns. We argue
that the additional hardware required to implement multiple
data columns per cell adds a relatively small cost compared
to the MACs. We demonstrate that adaptive tiling leads to a
2-3x decrease in the number of required systolic array calls
compared to fixed tiling.

With these results, we conclude that it is feasible to achieve
high efficiency when applying fixed-size systolic arrays to
sparse CNNs derived from aggressive weight pruning.

ACKNOWLEDGMENT

This research is supported in part by a gift from MediaTek
USA, Inc.

REFERENCES

[1] F. Chollet. Xception: Deep learning with depthwise separable convolu-
tions. arXiv preprint arXiv:1610.02357, 2016.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[3] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. Shidiannao: Shifting vision processing closer to the
sensor. In ACM SIGARCH Computer Architecture News, volume 43,
pages 92–104. ACM, 2015.

[4] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun. Neuflow: A runtime reconfigurable dataflow processor
for vision. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, pages 109–
116. IEEE, 2011.

[5] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture,
pages 1–12. ACM, 2017.

[8] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset, 2014.
[9] H. T. Kung. Why systolic architectures? IEEE Computer, 15:37–46,

1982.
[10] H. T. Kung and C. E. Leiserson. Systolic arrays (for vlsi). In Sparse

Matrix Proceedings 1978, pages 256–282. Society for Industrial and
Applied Mathematics, 1979.

[11] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of
handwritten digits, 1998.

[12] S. Narang, E. Undersander, and G. F. Diamos. Block-sparse recurrent
neural networks. CoRR, abs/1711.02782, 2017. URL http://arxiv.org/
abs/1711.02782.

[13] S. Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[14] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–
288, 1996.

[15] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information
Processing Systems, pages 2074–2082, 2016.

[16] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

http://arxiv.org/abs/1711.02782
http://arxiv.org/abs/1711.02782

[17] M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 68(1):49–67, 2006.

	Introduction
	Background
	Lasso-based Methods to Reduce Model Size
	Systolic Matrix Multiplier
	MobileNet and Lasso-Mobile
	Systolic Array for Pointwise Convolution

	Overview of the Adaptive Tiling Approach
	Adaptive Tiling via Multiple Columns per Cell
	Selecting Columns to Be Combined
	Cost of Multiple Data Columns per Cell

	Evaluation
	Evaluation Setup and Datasets
	Impact of Model Size on Classification Accuracy
	Number of Nonzero Weights per Pointwise Layer
	Efficiency Gains of Adaptive Tiling

	Conclusion

