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Abstract—Integrated circuit manufacturing consists of tests
at various stages to ensure functionality and performance
using numerous test metrics for each system on chip (SoC)
captured as part of assessment. At a later stage, functional
units are evaluated in terms of multiple performance char-
acteristics. In this paper, we propose a system that uses test
metrics as features for machine learning models to predict
the performance characteristics of each SoC. We show that
these models are robust against erroneous or noisy signal in
test metrics and provide accurate prediction. Given accurate
models, we build a system that automatically detects systematic
changes in the manufacturing process from week to week and
identifies wafers, a grouping of patterned dies in the fabrication
process, which have significantly higher than average prediction
error and label them as outliers. These outliers are analyzed
in order to determine the cause of the discrepancy and to
assess potential problems in the manufacturing process. The
system has been proven applicable across multiple products
and process technologies.

I. INTRODUCTION

The manufacturing process for a SoC stretches across
many weeks during which time it undergoes a series of tests
at each stage. Figure 1 depicts a simple manufacturing flow.
The metrics captured during these tests are numerical values
corresponding to specific components (e.g. graphics) on the
SoC. These metrics help in the detection of operational
anomalies within a SoC. Only the units (SoCs) which have
acceptable test metrics are allowed to proceed to the next
stage of the manufacturing process. Microprocessors with
insufficient test metrics are dropped from the manufacturing
pipeline. A later stage of the manufacturing process mea-
sures performance metrics such as yield, the percentage of
good die in a wafer, and parametric, the performance of
a component (e.g. core or graphics) on the SoC at a set
frequency. While the test metrics are able to identify outright
defects, they do not provide a high level view of potential
systematic problems in the testing process overall. In other
words, these metrics do not summarize large scale systematic
changes in the manufacturing process that may occur from
one week to the next. Additionally, these metrics are at an
individual SoC or wafer level, and do not directly measure
the health of a wafer when compared to the population.

This work focuses on applying machine learning tech-
niques to predict performance metrics (yield and parametric)

Figure 1. An overview of the manufacturing flow. The test metrics
measured at Test 1 are used to predict the performance metrics measured
at Test 2.

Figure 2. Diagram of the interface discussed in section VI, showing the
prediction residuals for the parametric of various SoC block components
assessed across measurement frequency. The blue and red tones indicate
under- and over-prediction respectively.

using metrics from an earlier test as features for the machine
learning models. These models, which we treat as a gold
standard, are used to identify systematic changes in the
manufacturing process and identify wafers with substantial
prediction error as outliers. Figure 2 shows an example of
the user interface discussed in section VI for parametric
predictions of a SoC.

Additionally, these models provide insight into which test
metrics are significantly different for the outlier as compared
to the entire population. This gives engineers a starting
point when trying to diagnose the potential issue, since each
test metric is associated with a specific part of the SoC.
During high volume manufacturing of millions of SoCs,
machine learning provides a very agile platform for instant
assessment and action. The system has been applied to
several of the latest generation processor models at Intel
and providing weekly feedback to engineers on the health
of the manufacturing process.

II. RELATED WORK

Frameworks developed by [1] for monitoring health of
equipments used in manufacturing processes apply statis-



tical techniques like mean drift and variance inflation on
equipment parameters recorded when a wafer passes through
them. In our work, manufacturing processes use performance
metrics of SoCs in form of feedback to take corrective
measures. Manufacturing processes have been modeled us-
ing Fuzzy Regression [2] for instances where there is a
scarcity of data. To our knowledge, this is the first study on
developing an automated framework for diagnosing potential
issues in a manufacturing process using machine learning
models which are generated from millions of SoCs.

III. PROBLEM DEFINITION

Detailed information about a single unit is captured at
each stage of the manufacturing process including metric
values and a completion timestamp. For the purpose of
prediction, units are grouped by the time frame (week) that
they go through the test 2 (performance) stage from Figure 1.
We use units processed in the previous weeks to predict units
that have not yet been processed through the performance
stage and will be processed in the following weeks. Let
test metrics for any week i be represented by Xi ∈ Rn×m

where n is the number of units being processed and m is
the number of test metrics associated with each unit. For
yield calculation we classify each unit as good or bad and
aggregate the number of good units in a wafer to get the
predicted yield. Therefore, let the label associated for n units
from all wafers which went through the performance stage in
week i be denoted by yi ∈ {bad, good}n. Let the parametric
for a specific component (e.g. Block A) associated with n
units for week i be denoted by vi ∈ Rn. Training data
is taken from the previous weeks using sliding window of
size s where 1 ≤ s ≤ 5. For instance to make predictions
for week w, the model will be trained using metrics from
s weeks: (Xw−s, vw−s), ..., (Xw−2, vw−2), (Xw−1, vw−1).
The bounds on s were decided from trial and error experi-
ments such that s captures the dynamics of the manufactur-
ing process.

IV. MODEL SELECTION

In this section, we discuss the choice of models for
predicting yield and parametric. Due to different dimen-
sionality of the test metrics and domain of the response
variables (yield or parametric), we use different techniques
to model each problem. The test metrics used as features are
problem specific and were picked by experts using domain
knowledge.

A. Yield Prediction

Yield prediction is a binary classification problem with
the labels {bad, good}. Accuracy of a model is measured
by the total number of units classified correctly for a week:

accy =

∑n
i=1 y

w
i == ŷwi
n

(1)

ŷwi is predicted label of ith unit which went through the
performance stage in week w. Only two test metrics are
used as features for this prediction problem. The features
used to classify a die are illustrative of its neighbor’s
functionality and the die’s parametric performance. We use
a nearest neighbor approach (k-NN) to model this problem.
Acceptable accuracy was attained with k <= 10. For
k > 10, we observed that the accuracy began to deteriorate.
To improve the accuracy further, we applied boosting using
weighted k-NN. Formally, a booster is provided with a set
of labeled training examples (x1, y1), . . . , (xn, yn), where
yi is the label associated with instance xi. On each round
k = 1, . . . ,K (with K <= 10), the booster devises a
distribution Dk over the set of examples, and requests
a weak hypothesis (k-NN in our case). Dk specifies the
relative importance of each example for the current round.
After K rounds, the booster combines weak hypotheses into
a single prediction rule. To speed up training of models,
and weekly prediction results, we used Fast Library for
Approximate Nearest Neighbors [3].

B. Parametric Prediction

Parametric prediction involves a larger set of test metrics
(≈ 1000). We chose Random Forest regression for this prob-
lem [4]. For this task, one of the most important factors in
the selection of a model is the ability to rank the importance
of the test metrics used by the model. This has a practical
impact as the models serve as a tool for the engineers
to understand potential issue in the manufacturing process.
Additionally, we can use the metric ranking to understand
the major difference between an outlier as compared to the
general population. Random Forests provide a very natural
ranking of metric importance by determining how much each
feature contributes to reducing out of sample measurement
error. In practice, we can show only the top ≈ 10 metrics
of a model as a way of explaining what are the important
metrics. Additionally, Random Forests are able to handle the
large volume of data and can be quickly updated from week
to week.

C. Model Update Criteria

Due to the dynamics of the manufacturing process, it is
important to be able to adjust the models to account for
new data each week. In general, however, the manufacturing
process for a given product is very stable from one week to
a next. Updating the model each week when there are only
small changes to the data will not have a large impact on
prediction accuracy. Additionally, updating the model every
week makes the system more complex for the engineers
to understand, as they need to investigate what caused the
change in the model from the previous week to the current
week. Therefore, for each problem, we use a criteria to
determine if a model needs to be updated given the newly
observed data for the week. The generation of a new model
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Figure 3. Yield residual results using boosted k-NN with k ∈
{1, 3, 5, 7, 9} for weak hypothesis. The y-axis is the 95th percentile of
the absolute difference between predicted and actual yield (residual) of
wafers.

signifies a reasonably large change in the test metrics as
compared to the previous weeks. For yield prediction, we use
the previously trained model to predict the new samples for
the week. If the average residual i.e. the absolute difference
between predicted and actual yield, for the new week is
equal to or smaller than the average residual for the previous
weeks, then we do not update the model. Otherwise, a new
model is trained and used to predict the new week. For
parametric prediction using Random Forests, we start by
always training a model for the new week. Then, we measure
the cosine similarity between the importance metric vectors
of the new model and the previous model and chose the
new model if they are less than 90% similar. Models that
are more than 90% similar imply that there is no significant
change, so the old model is kept. In practice, we observe
that a model can be used for many weeks without the need
for change and still make accurate predictions.

V. MODEL VALIDATION

As stated earlier, we treat the machine learning models as
a gold standard used to inform the manufacturing process,
and therefore it is essential for the models to make accurate
predictions for a majority of units. Figure 3 shows the 95th

percentile of residual for yield. For product A, the residuals
are ≈ 0.05. For product B, which is a newer product than
A, the residuals are slightly higher at ≈ 0.1. Generally,
we observe that newer product have larger residuals due
to more changes on a weekly basis in the manufacturing
process. Figure 4 shows the 95th percentile of residuals
for parametric prediction. For both products, the residual
is ≈ 0.02. The parametric predictions are considered quite
accurate which is due to the larger number of test metrics
used for the model. We see that the residuals for both the
yield and parametric models are very stable across multiple
product and over many weeks.
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Figure 4. Parametric residual results using Random Forests. The y-axis is
the 95th percentile of the absolute difference between predicted and actual
voltage of each SoC.

VI. OUTLIER DETECTION

The main benefit of an outlier detection system is that
it dramatically reduces the number of wafers that must be
analyzed manually. Wafers are labeled as outliers based on
the model residuals for yield or parametric. Since yield is
measured for an entire wafer, the residual is the absolute
percentage difference between the model’s predicted number
of good units in the wafer and actual number of good units
in the wafer. Parametric is measured for each SoC on a
wafer individually. The model predicts the parametric of a
component for each unit and then summarizes the error to
the wafer level. To aggregate these residuals to a wafer level,
we average the residuals for each unit on a wafer. Figure 5
shows the average residual for all the wafers for Product D
at week 4. In general, the average residual for the wafers are
similar to the average residual at the die level as shown in
Figure 4. However, we observe that there are several wafers
that have much higher than average residual, which would
be labeled as outliers.

There are an abundant number of outlier detection tech-
niques [5]. We use Density-based spatial clustering of
applications with noise (DBSCAN) as it naturally marks
samples in low density regions as outliers [6]. There are
two tunable parameters for DBSCAN which must be set
for the application. Eps is the minimum distance between
two points for them to be considered in the same neigh-
borhood (cluster). MinPts is the minimum number of points
required in a neighborhood for it to be considered a cluster.
Neighborhoods with fewer than MinPts will be marked as
outliers. For instance, if we set Eps to 0.005 and MinPts to
5, then for Figure 4, DBSCAN would mark the two wafers
beyond 0.45 average residual as outliers. The main benefit of
using DBSCAN, as opposed to setting an outlier threshold
(e.g. mark wafers with residuals > 0.40 as outliers), is
that it is able to adjust to differences in the distribution of
residuals over both products and weeks. For instance, setting
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Figure 5. Histogram of average residual per wafer for all product D wafers
at week 4. Red, orange and grey represent 80.0%, 95.0% and 100.0% of
the population cumulatively.

a threshold of 0.40 may work well for product D, but would
label many normal wafers as outliers for product C. Using
DBSCAN allows for a more robust outlier detection system
that works well over different products.

A. Outlier Diagnosis

Apart from labeling wafers as outliers each week, meta-
information about the model and test metrics are provided
to aid the engineers in the diagnose process. The meta-
information includes the relevant test metrics (which are
ranked by the model) and an indication of if the model was
updated that week. For yield the small number of parameters
means that they are all relevant each week. For paramet-
ric, the relevant parameters depend significantly on which
component the model is being trained for. For instance, if a
model is predicting the parametric of a graphical component
on the unit, most of the important test metrics will be related
to graphics.

For ease in diagnosis, we provide all trends and meta-
information via a graphical user interface. Additionally, we
provide in-depth views for each wafer so that the outliers
can be examined at a more granular level. Figure 6 is a
screenshot from the interface showing an arbitrary die grid.
This is an illustrative example of an outlier group and does
not contain any real data. While this is a mock example,
it generally follows similar patterns of the real observed
outliers for the various products. The colors represent the
residuals and show if the model over- or under-predicted the
actual value. To determine which test metrics are causing the
large residual, a model is trained using just the units on the
outlier wafer. For parametric, we take the difference of the
important metric vectors of the model trained on the entire
population and the model trained on just the outlier. After
ordering the differences by magnitude, we show which test
metrics have a much larger or smaller impact for the outlier
as compared to the total population.

The wafers labeled as outliers due to large yield residual
need domain experts to investigate further. This is due to

Figure 6. An arbitrary grid of SoC die. Blue tones indicate that the model
under-predicted the actual value and red tones indicate over-prediction. The
gray boxes with black Xs indicates units that did not have sufficient test
metrics and were dropped before the performance metric stage.

the limited number of test metrics used to predict the yield.
Other test metrics which were not used in the model are
analyzed by experts to determine the root cause for the large
residual.

VII. CONCLUSION

In this paper, we have applied advanced machine learning
techniques to large scale manufacturing process at Intel to
automatically identify systematic changes and detect outlier
wafers. We show that machine learning can effectively
model this manufacturing process and provide accurate
predictions, leading to a significant reduction in the amount
of data that must be inspected manually. Meta-information
about each outlier is provided to aid in expediting the
inspection process. A user interface provides a high level
summary of the state of the manufacturing process which is
updated on a weekly basis for each product. Ultimately, this
automation facilitates faster detection and decision making
with application to any type of manufacturing process.
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